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Abstract

The evolution of a quantum system undergoing very frequent measurements takes place in a proper subspace of the total
Ž .Hilbert space quantum Zeno effect . The dynamical properties of this evolution are investigated and several examples are

considered. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 03.65.Bz; 02.20.Mp; 02.30.Tb

1. Introduction

A quantum system, prepared in a state that does
not belong to an eigenvalue of its total Hamiltonian,

w xstarts to evolve quadratically in time 1–3 . This
behavior leads to the so-called quantum Zeno phe-
nomenon: by performing frequent measurements on
the system, in order to check whether it is still in its
initial state, one can ‘slow down’ its temporal evolu-

Žtion hindering transitions to states different from the
. w xinitial one 4,5 .

This curious feature of the quantal evolution has
recently attracted much attention in the physics com-
munity. This is mainly due to a nice idea put forward

w xby Cook 6 , who proposed to check this effect on a

) Corresponding author.
Ž .E-mail address: pascazio@ba.infn.it S. Pascazio .

two-level system, and to a related experimental test
w x w x7 , that motivated an interesting discussion 8–16 .
In turn, this has led to new proposals and experi-

w xments 17–19 . However, it should be emphasized
that these studies do not deal with bona fide unstable

Ž .systems, following approximately exponential laws,
w xas in the original proposals 1–3 . The presence of a

non-exponential decay at short times has been de-
w xtected only recently 20 .

The aim of the present Letter is to investigate an
Ž .interesting and often overlooked feature of what we

might call a quantum Zeno dynamics. We shall see
Žthat a series of ‘measurements’ von Neumann’s

w x.projections 21 does not necessarily hinder the evo-
lution of the quantum system. On the contrary, the
system can evolve away from its initial state, pro-
vided it remains in the subspace defined by the
‘measurement’ itself. This interesting feature is read-
ily understandable in terms of a theorem proved by

Ž . w xMisra and Sudarshan MS 3 , but it seems to us that

0375-9601r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
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it is worth clarifying it further by analyzing some
interesting examples.

2. Misra and Sudarshan’s theorem

Consider a quantum system Q, whose states be-
long to the Hilbert space HH and whose evolution is

Ž . Ž .described by the unitary operator U t sexp yiHt ,
where H is a time-independent semi-bounded
Hamiltonian. Let E be a projection operator that

w xdoes not commute with the Hamiltonian, E, H /0,
and EHHEsHH the subspace spanned by its eigen-E

states. The initial density matrix r of system Q is0

taken to belong to HH . If Q is let to follow itsE

‘undisturbed’ evolution, under the action of the
ŽHamiltonian H i.e., no measurements are performed

.in order to get information about its quantum state ,
the final state at time T reads

r T sU T r U † T 2.1Ž . Ž . Ž . Ž .0

and the probability that the system is still in HH atE

time T is
†P T sTr U T r U T E . 2.2Ž . Ž . Ž . Ž .0

We call this a ‘survival probability:’ it is in general
smaller than 1, since the Hamiltonian H induces
transitions out of HH . We shall say that the quantumE

system has ‘survived’ if it is found to be in HH byE

means of a suitable measurement process.1 We stress
that we do not distinguish between one- and many-
dimensional projections: in the examples to be con-
sidered in this note, E will be infinite-dimensional.

Assume that we perform a measurement at time t,
in order to check whether Q has survived. Such a
measurement is formally represented by the projec-
tion operator E. By definition,

w xr sEr E, Tr r E s1. 2.3Ž .0 0 0

After the measurement, the state of Q changes into

r ™r t sEU t r U † t E, 2.4Ž . Ž . Ž . Ž .0 0

1 w xMisra and Sudarshan in 3 considered an initial ‘unstable’
state r and took E to be the subspace of the undecayed states.0

The expression ‘survived’ means in their case ‘undecayed.’

with probability

†P t sTr U t r U t EŽ . Ž . Ž .0

†sTr EU t Er EU t EŽ . Ž .0

†sTr V t r V t .Ž . Ž .0

V t 'EU t E 2.5Ž . Ž . Ž .Ž .

This is the probability that the system has ‘survived’
in HH . There is, of course, a probability 1yP thatE

Žthe system has not survived i.e., it has made a
.transition outside HH and its state has changed intoE

XŽ . Ž . Ž . †Ž .Ž .r t s 1yE U t r U t 1yE . The states r0

and r
X together make up a block diagonal matrix:

The initial density matrix is reduced to a mixture and
any possibility of interference between ‘survived’

Žand ‘not survived’ states is destroyed complete de-
.coherence .

We shall concentrate henceforth our attention on
Ž . Ž .the measurement outcome 2.4 , 2.5 . We observe

that the evolution just described is time-translation
Žinvariant and the dynamics is not reversible not

.only not time-reversal invariant .
The above is the Copenhagen interpretation: the

measurement is considered to be instantaneous. The
w x‘quantum Zeno paradox’ 3 is the following. We

prepare Q in the initial state r at time 0 and0

perform a series of E-observations at times t sj
Ž .jTrN js1, PPP , N . The state of Q after the

above-mentioned N measurements reads

r ŽN . T sV T r V † T ,Ž . Ž . Ž .N 0 N

N
V T ' EU TrN E 2.6Ž . Ž . Ž .N

and the probability to find the system in HHE
Ž .‘survival probability’ is given by

ŽN . †P T sTr V T r V T . 2.7Ž . Ž . Ž . Ž .N 0 N

Ž . Ž .Eqs. 2.6 , 2.7 display the ‘quantum Zeno effect:’
repeated observations in succession modify the dy-
namics of the quantum system; under general condi-
tions, if N is sufficiently large, all transitions outside
HH are inhibited. Notice again that the dynamicsE
Ž . Ž .2.6 , 2.7 is not reversible.
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ŽIn order to consider the N™` limit ‘continuous
.observation’ , one needs some mathematical require-

ments: assume that the limit

VV T ' lim V T 2.8Ž . Ž . Ž .N
N™`

exists in the strong sense. The final state of Q is then

r T sVV T r VV † T 2.9Ž . Ž . Ž . Ž .0

and the probability to find the system in HH isE

ŽN . †PP T ' lim P T sTr VV T r VV T .Ž . Ž . Ž . Ž .0
N™`

2.10Ž .

One should carefully notice that nothing is said
Ž .about the final state r T , which depends on the

characteristics of the model investigated and on the
ŽÕery measurement performed i.e. on the projection

.operator E, by means of which V is defined . ByN
Ž .assuming the strong continuity of VV t

lim VV t sE, 2.11Ž . Ž .
qt™0

one can prove that under general conditions the
operators

VV T exist for all real T and form a semigroup.Ž .
2.12Ž .

Moreover, by time-reversal invariance

VV † T sVV yT , 2.13Ž . Ž . Ž .
†Ž . Ž . Ž .so that VV T VV T sE. This implies, by 2.3 , that

† w xPP T sTr r VV T VV T sTr r E s1.Ž . Ž . Ž .0 0

2.14Ž .

If the particle is ‘continuously’ observed, in order to
check whether it has survived inside HH , it willE

never make a transition to HH H . This was namedE
w x‘quantum Zeno paradox’ 3 . The expression ‘quan-

tum Zeno effect’ seems more appropriate, nowadays.
Two important remarks are now in order: first, it

is not clear whether the dynamics in the N™` limit
is time reversible. Although one ends up, in general,
with a semigroup, there are concrete elements of
reversibility in the above equations. Second, the
theorem just summarized does not state that the
system remains in its initial state, after the series of
very frequent measurements. Rather, the system is

left in the subspace HH , instead of evolving ‘natu-E

rally’ in the total Hilbert space HH. This subtle point,
Ž . Ž .implied by Eqs. 2.9 – 2.14 , is not duely stressed in

Žthe literature a concrete example is considered in
w x.22 .

Incidentally, we emphasize that there is a concep-
Ž . Ž .tual gap between Eqs. 2.7 and 2.10 : to perform an

experiment with N finite is only a practical problem,
from the physical point of view. On the other hand,
the N™` case is physically unattainable, and is

Žrather to be regarded as a mathematical limit al-
.though a very interesting one . In this Letter, we

Žshall not be concerned with this problem investi-
w x w xgated in 23–27 ; see also 28 , where an interesting

.perspective is advocated and shall consider the N
™` limit for simplicity. This will make the analysis
more transparent.

3. Evolution in the ‘Zeno’ subspace

We start off by looking at some explicit exam-
ples. Consider a free particle of mass m on the real
line. The Hamiltonian and the corresponding evolu-
tion operator are

p2

Hs , U t sexp yitH . 3.1Ž . Ž . Ž .
2m

Observe that H is a positive-definite self-adjoint
2Ž . Ž .operator in L R and U t is unitary. We shall

study the quantum Zeno effect when the system
undergoes a measurement defined by the projector

< :² <E s dx x x x x , 3.2Ž . Ž .HA A

where x is the characteristic functionA

1 for xgA;R
x x s 3.3Ž . Ž .A ½ 0 otherwise

and A an interval of R. In a few words, we check
whether a particle, initially prepared in a state with
support in A and free to move on the real line, is
still found in A at a later time T. Our objective is to
understand how the system evolves in the ‘Zeno’
subspace HH sE HHE . We call this a ‘quantumE A AA

Zeno dynamics with a nonholonomic constraint.’
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We shall work with the Euclidean Feynman inte-
Ž .gral. Let the particle be initially ts0 at position

ygE . The propagator at time tsTrN, when aA

measurement is carried out, reads

² < < : ² < < :G x ,t ; y ' x E U t y sx x x U t y .Ž . Ž . Ž . Ž .A A

3.4Ž .

For imaginary time tsyit , we get the Green func-
tion of the heat equation

² < < :x U yit yŽ .

² < < :s x exp yt H yŽ .

² < : yt p2 r2 m² < :s dp x p e p yH
dp 2yt p r2 mqi pŽ xyy.s eH
2p

2m m xyyŽ .
s exp y , 3.5Ž .(2pt 2t

so that the Euclidean propagator for a single ‘step’
reads

W x ,t ; y 'G x ,y it ; yŽ . Ž .
2m m xyyŽ .

sx x exp y .Ž .(A 2pt 2t

3.6Ž .

The evolution operator after N measurements, see
Ž .2.6 , can be written as

N
V T ' E U TrN E 3.7Ž . Ž . Ž .N A A

and the resulting propagator is

² < < :G x ,T ; x s x V T x . 3.8Ž . Ž . Ž .N f i f N i

For imaginary TTs iT this becomes

W x ,TT ; xŽ .N f i

'G x ,y iTT ; xŽ .N f i

s dx PPP dx W x ,t ; x PPPŽ .H 1 Ny1 f Ny1

=W x ,t ; x x x , 3.9Ž . Ž . Ž .1 i A i

whose relation with Wiener integration is manifest.
Notice that if we could drop the characteristic func-

Ž . Ž .tion x in the propagator 3.6 , then 3.9 would beA

a sequence of nested Gaussian integrals, that could
be evaluated exactly for every N by applying Feyn-

w x Ž .man’s recipe 29 . In 3.9 the characteristic func-
tions restrict at every step the set of possible paths,

Žmodifying the structure of the functional integral a
similar situation was considered by Yamada and
Takagi in the attempt to define the passage time

w x.through a barrier. See 30–33 . Let us therefore try
Ž .to reduce the integral 3.9 to a Gaussian form. To

this end we apply a trick that is often used when one
endeavours to relate probability and potential theory
w x34 . We first rewrite the characteristic function in
terms of a potential, which is infinite outside A,2 so

Ž .that the Brownian paths of the Wiener process 3.9
can never leak out of A:

x x sexp yt V x ,Ž . Ž .Ž .A A

with

0 for xgAV x s , 3.10Ž . Ž .A ½q` otherwise

Ž .Hence, by using 3.10 , the Euclidean one-step prop-
Ž .agator 3.6 becomes

W x ,t ; yŽ .
2m m xyyŽ .

s exp y yt V xŽ .( A2pt 2t

² < yt VA yt H < :s x e e y 3.11Ž .

and returning to real time

² < yi tVA yi tH < :G x ,t ; y sW x ,it ; y s x e e y .Ž . Ž .
3.12Ž .

2 It is only at this stage that we must require that A is a
wwell-behaved set like, for example, an interval of R see our

Ž .x Ž .starting point 3.3 . For instance, the potential 3.10 would be
w xphysically meaningless for the Cantor set in 0,1 .
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Consider now the limit of continuous observation
N™`. The limiting propagator reads

GG x ,T ; xŽ .f i

s lim G x ,T ; xŽ .N f i
N™`

NyiT V r N yiT Hr NA² < < :s lim x e e E x , 3.13Ž . Ž .f A i
N™`

which, by using the Trotter product formula, yields

² < yiT ŽHqVA. < :GG x ,T ; x s x e E xŽ .f i f A i

² < < :s x VV T x , 3.14Ž . Ž .f i

where the evolution operator is

VV T sexp yiTH E , 3.15Ž . Ž . Ž .Z A

p2

with H ' qV x . 3.16Ž . Ž .Z A2m

The above formula is of general validity: the dynam-
ics within the Zeno subspace HH is governed by theEA

Ž . Ž .operators 3.15 , 3.16 . In the above derivation we
have implicitly assumed the validity of the Trotter
product formula, even though, strictly speaking, the
conditions for its applicability are not fulfilled. A
mathematically rigorous regularization of this prob-
lem can be performed, but will not be shown here.

It is worth stressing that the previous calculation
only makes use of the properties of the kinetic
energy operator p2: we have not considered the
momentum operator p. It goes without saying that p
can be symmetric, maximally symmetric or self-ad-
joint, according to the structure of A and the bound-
ary conditions. This will be thoroughly discussed in
the following. However, we emphasize that any re-
quirement on p would be a physical requirement:
the mathematical properties of the ‘Zeno’ evolution

Žonly involve the Hamiltonian which is defined in
.terms of the kinetic energy .

Before we proceed further, let us look at two
particular cases:

w xA s 0,1 , 3.17Ž .1

wA s 0,q` . 3.18. Ž .2

In the first case, if one performs a Zeno dynamics
with the free Hamiltonian

yE 2 d
0H s E' 3.19Ž .Z ž /2m dx

one must require, according to the analysis leading to
Ž . Ž .3.15 , 3.16 , that the wave function vanishes on the
boundary: this is the only sensible requirement, from
a physical point of view, given the ‘rigid-wall’ po-

Ž . Ž .tential 3.10 . On the other hand, the operator 3.19
is self-adjoint on the space

0 2 <w xD H s fgAC 0,1 f 0 sf 1 s0 ,� 4Ž . Ž .Ž .w0 ,1x Z

3.20Ž .

2w x 2w xwhere AC S is the set of functions in L S whose
w x Ž w xweak derivatives are in AC S . AC S is the set of

absolutely continuous functions whose weak deriva-
2w x .tives are in L S . This choice of boundary condi-

tions appears therefore as the most ‘natural’ one: one
might say that in the example considered, the quan-

Žtum Zeno effect engendered by the projection opera-
.tors yields a given dynamics in the Zeno subspace,

Ž .by ‘picking’ the boundary conditions 3.20 for the
‘new’ Hamiltonian H . Of course, many otherZ

boundary conditions would yield a self-adjoint HZ
Ž .in 3.16 , but these seem physically less appealing,

for a quantum Zeno dynamics. This interesting ob-
servation is only motivated on physical grounds.
However, a rigorous regularization of the Trotter
formula for the Zeno problem just described shows

Ž .that the boundary conditions 3.20 are the only
mathematically possible ones. This will not be dis-
cussed here. The problem of the boundary conditions
arises also in different but related contexts, such as

w xthat of consistent histories and time of arrival 35,36 .
It is important to realize that, by virtue of the

choice of boundary conditions, the evolution opera-
Ž . Ž .tors VV T in 3.15 form a one-parameter group.

We notice, incidentally, that MS’s mathematical hy-
Ž . Ž .potheses 2.8 and 2.11 are satisfied and acquire in

this example an appealing physical meaning. We
Ž .also stress that the theorem 2.12 appears in this

Ž .case too restrictive: indeed the operators VV T form
a group and not simply a semigroup.

We also observe that in this example the momen-
tum operator yiE is symmetric, but not self-adjoint:
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Ž . Ž .its deficiency indices in 3.20 are 1,1 . Therefore, a
self-adjoint extension of yiE is possible. It is impor-
tant to stress that the Hamiltonian H is self-adjointZ

2 wbecause it involves only E which is self-adjoint in
Ž .x3.20 . There is here an interesting classical anal-
ogy: when a classical particle elastically bounces
between two rigid walls, any trajectory is character-

Ž 2 .ized by a definite value of energy p r2m , al-
though momentum changes periodically between "p.

ŽThis is reflected in the symmetry rather than self-ad-
.jointness of the quantum mechanical p operator.

Ž .Let us now look at the example A in 3.18 . The2
Ž .free Hamiltonian 3.19 is self-adjoint on the space

0 2 <wD H s fgAC 0,` f 0 s0 , 3.21� 4. Ž . Ž .Ž ..w 0,` Z

Once again, like in the previous example, this is just
the ‘natural’ boundary condition, arising from a

Ž .quantum Zeno dynamics for the potential 3.10 : due
Žto this choice that can be rigorously justified by

.regularizing the prolem the evolution operators
Ž .VV T form a one-parameter group and can draw the

same conclusions as in the previous example. There
is only one difference: the momentum operator yiE
is again symmetric, but its deficiency indices are
Ž .0,1 . This is irrelevant as far as one’s attention is
restricted to the Hamiltonian and the Zeno dynamics;

Ž .however, if one is motivated on physical grounds
to consider the properties of momentum, the best one
can do in this case is to obtain the most appropriate

Žmaximally symmetric momentum operator. We
wonder whether this has spin-offs at a fundamental

.quantum mechanical level.

4. The problem of the lower-boundedness of the
Hamiltonian

Let us consider now the model Hamiltonian H 0
Z

w xspsyiE in A s 0,1 , describing an ultrarela-1

tivistic particle in an interval. The mathematical
features of this example are very interesting and
deserve careful investigation. A similar example was

w xconsidered in 3 , although in a different perspective.
The Zeno dynamics yields

VV T sexp yiTH E , 4.1Ž . Ž . Ž .Z A1

with H 'pqV x , 4.2Ž . Ž .Z A1

Ž .where V is defined in 3.10 . By a reasoning identi-A

cal to that of the previous section, one infers that the
‘natural’ boundary conditions arising from the Zeno
dynamics are

<w xD p s fgAC 0,1 f 0 s0sf 1 .� 4Ž . Ž . Ž .Z

4.3Ž .
ŽWe notice, incidentally, that this problem requires
no regularization, for the dynamics can be calculated

.without making use of the Trotter formula. In this
domain the Hamiltonian p is symmetric but not

Ž .self-adjoint: its deficiency indices are 1,1 . There-
fore, by Stone’s theorem, the Zeno dynamics is not
governed by a group and is certainly not time-rever-
sal invariant. More to this, this Hamiltonian is not
lower bounded and therefore violates one of the
premises of the MS theorem. In order to understand
what happens during a Zeno dynamics, look at the
first row in Fig. 1, where an arbitrary wave packet
evolves under the action of the free Hamiltonian p
Žincidentally, notice that the wave packet does not

.disperse, due to the form of the Hamiltonian . The
probability of ‘surviving’ inside A decreases with1

time: in other words, even though a ‘continuous’
measurement is performed, in order to check whether
the particle is outside A , the particle does leak out1

of A and no quantum Zeno effect takes place.1

Let us now assume, on physical grounds, the
validity of periodic boundary conditions:

a < i aw xD p s fgAC 0,1 f 0 sf 1 e , 4.4� 4Ž . Ž . Ž . Ž .
where the phase a determines the specific self-ad-
joint extension. Notice that this is a physical require-
ment: it is not a consequence of the Zeno dynamics.
The Hamiltonian is now self-adjoint and the dynam-

Ž .ics is governed by a unitary group Stone’s theorem .
Obviously, the physical picture given by this self-ad-
joint extension is completely different from the pre-
vious case. See the second row in Fig. 1: a quantum
Zeno effect takes place.

We also stress that the dependence of the Hamil-
tonian on the p operator is not a sufficient condition
to yield the behavior described above. In order to
clarify this point, let us consider an additional exam-

Ž .ple. Let we set ms1r2

Hsp2 qp m H sp2 qpqV x . 4.5Ž . Ž .Z A

w 2We first observe that H is lower bounded p qps
Ž .2 xpq1r2 y1r4 ; notice also that this Hamiltonian
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Ž . Ž .Fig. 1. ‘Natural’ Zeno versus periodic self-adjoint boundary conditions for the Hamiltonian Hsp. Above: quantum evolution of a wave
Ž .packet of arbitrary shape with the boundary conditions 4.3 , ‘naturally’ arising in a Zeno dynamics: there is no quantum Zeno effect

Ž .increasing time from left to right . Below: evolution of the same wave packet with the additional requirement that the unbounded
w x Ž .Hamiltonian operator p be self-adjoint in 0,1 : a quantum Zeno effect occurs increasing time from left to right .

can be transformed into the usual form by adding a
xphase xr2 to the wave function. Consider again the

quantum Zeno dynamics on the sets A and A .1 2

Since this is not a classical textbook example, we
explicitly derive the deficiencies. In the first case
Ž .A one gets1

H f ,c y f , H )cŽ . Ž .Z Z

X Xsyif 0 c 0 qf 0 c 0 yf 0 c 0Ž . Ž . Ž . Ž . Ž . Ž .
X Xq if 1 c 1 yf 1 c 1 qf 1 c 1 .Ž . Ž . Ž . Ž . Ž . Ž .

4.6Ž .
It is easy to check that H is lower bounded and selfZ

Ž .adjoint on the space 3.20 . The Zeno evolution is
therefore unitary.

Ž .In the second case A one gets2

H f ,c y f , H )cŽ . Ž .Z Z

X Xsyif 0 c 0 qf 0 c 0 yf 0 c 0 .Ž . Ž . Ž . Ž . Ž . Ž .
4.7Ž .

It is straightforward to check that the Hamiltonian is
Ž .lower bounded and self-adjoint on the space 3.21 .

Once again, the Zeno evolution is unitary.

5. Discussion

One is led to the following question: is it possible
to find an example in which the Zeno dynamics is
governed by a dynamical semigroup? The answer to
this question would be positive if one could find a
quantum Zeno dynamics yielding a symmetric, but

not self-adjoint, Hamiltonian operator. Indeed, in
such a case, by Stone’s theorem one cannot have a
group, and by MS’s theorem one must have a semi-
group.

It would be incorrect to think that the model
w x ŽHamiltonian HspsyiE in A s 0,1 or even1

w ..more in A s 0,` provides us with the counterex-2

ample we seek. Indeed, such a Hamiltonian is not a
satisfactory example, because it violates one of the
premises of the MS theorem, that requires a lower-

Žbounded Hamiltonian from the outset see beginning
.of Section 2 .

We are unable, at the present stage, to give a
clear-cut answer to this problem. However, some
comments are in order. If, for some reason, the
quantum Zeno dynamics yields a symmetric Hamil-
tonian operator and does not fix the boundary condi-
tions, then one might consider on physical grounds,
among the possible choices of boundary conditions,
those that yield a self-adjoint extension of the Zeno
Hamiltonian H . In this case, close inspection showsZ

that a quantum Zeno dynamics always yields a group,
at least in the class of systems considered in this
note: indeed, a theorem due to von Neumann, Stone

w xand Friedrichs 37,38 states that ‘every semi-
bounded symmetric transformation S can be ex-
tended to a semi-bounded self-adjoint transformation

X X ŽS in such a way that S has the same greatest lower
.or least upper bound as S.’ Therefore, if the Hamil-

Ž . Žtonian is lower-bounded, as for instance in 3.1 one
could even add a non-pathological potential to the

.kinetic energy , the Zeno dynamics in an interval of
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R will also be engendered by a lower-bounded
Ž .Hamiltonian, like in 3.16 ; this would always admit

Ža self-adjoint extension due to the above-mentioned
.theorem , which in turn would yield a group of

evolution operators. Therefore, in order to avoid the
consequences of von Neumann’s theorem, the opera-
tors arising from the Zeno dynamics must not be
lower bounded. Only in such a case the Zeno Hamil-
tonian might not admit self-adjoint extensions.

On the other hand, if the Zeno dynamics uniquely
determines the boundary conditions, it would be

Ž .interesting to find a physical example if it exists in
which the Zeno Hamiltonian is symmetric but not
self adjoint. This would yield a semigroup.

In conclusion, we have seen that in the situations
considered in this Letter the quantum Zeno effect
yields a unitary dynamics, governed by groups, not
by semigroups. We are therefore left with two possi-

.ble options: i The MS theorem can be made stronger
and the Zeno dynamics is always governed by a

.group; ii Different projections, more general than
Ž . Ž .3.2 , 3.3 , andror different Hamiltonian operators
may yield symmetric Zeno Hamiltonian operators

Žthat are not self-adjoint or, even more, maximally
.symmetric operators with no self-adjoint extensions

Ž .and therefore due to the MS theorem a semigroup
of evolution operators.

The answer to the above alternative would clarify
whether a quantum Zeno dynamics introduces some
elements of irreversibility in the evolution of a quan-
tum system. This is an interesting open problem.
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