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Abstract

We exhibit a specific implementation of the creation of geometrical phase through the state-space evolution generated by
the dynamic quantum Zeno effect. That is, a system is guided through a closed loop in Hilbert space by means a sequence of
closely spaced projections leading to a phase difference with respect to the original state. Our goal is the proposal of a
specific experimental setup in which this phase could be created and observed. To this end we study the case of neutron
spin, examine the practical aspects of realizing the ‘projections’, and estimate the difference between the idealized
projections and the experimental implementation. q 1999 Elsevier Science B.V. All rights reserved.

PACS: 03.65.Bz; 03.75.Be; 03.75.Dg

1. Introduction

The effect of the observer in quantum mechanics
is perhaps nowhere more dramatic than in the collec-

Ž .tion of phenomena loosely and casually known as
the ‘quantum Zeno effect’. This was first formulated

w xby von Neumann 1,2 , and is deeply rooted in
fundamental features of the temporal behavior of

w xquantum systems 3 . During the last decade there
has been much interest in this issue, mainly because

w xof an idea due to Cook 4 , who proposed using
two-level systems to check this effect, and the subse-

w xquent experiment performed by Itano et al. 5 . New
experiments were proposed, based on the physics of
the simplest of two-level systems: Neutron spin and

w xphoton polarization 6,7 .

Most of the referenced papers deal with what
might be called the ‘static’ version of the quantum
Zeno effect. However, the most striking action of the

Žobserver is not only to stop time evolution e.g., by
.repeatedly checking if a system has decayed , but to

guide it. In this article we will be concerned with a
‘dynamical’ version of the phenomenon: we will
show how guiding a system through a closed loop in

Ž .its state space projective Hilbert space leads to a
w xgeometrical phase 8–12 . This was predicted on

w xgeneral grounds 13 , but here we use a specific
w ximplementation on a spin system 14 and propose a

particular experimental context in which to see this
effect. It is remarkable that the Berry phase that is
discussed below is due to measurements only: no
Hamiltonian is needed.

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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2. Forcing the pot to boil

We summarize the main features of the quantum
Ž .Zeno effect QZE . Prepare a quantum system in

Ž .some initial state c 0 . In time dt, by the Schrodi-¨
Ž .nger equation, its phase changes by O dt while the

absolute value of its scalar product with the initial
Ž 2 .state changes by O dt .

The dynamical quantum Zeno effect exploits the
above features and forces the evolution in an arbi-
trary direction by a series of repeated measurements:
Let c evolve with the Hamiltonian H, so that in the

Ž .absence of observations its evolution would be c T
Ž . Ž . Ž .sexp yiHT c 0 we take "s1 throughout . Let

there be a family of states f , ks0,1, . . . , N, suchk
Ž .that f sc 0 , and such that successive states differ0

Ž <² < : < .little from one another i.e., f f is nearly 1 .kq1 k

Now let d TsTrN and at T skd T project thek

evolving wave function on f . Then for sufficientlyk
Ž . wlarge N, c T ff . The usual QZE is the specialN

Ž Ž .. xcase f sf sc 0 ; k.k 0

In the following we consider an experiment in-
volving a neutron spin. It should be clear, however,
that our proposal is valid for any system with the
same two-level structure.

2.1. EÕolution with no Hamiltonian

Assume first that there is no Hamiltonian acting
on the system: one can think, for instance, of a
neutron crossing a region where no magnetic field is
present. The time-evolution is due to measurement
only.

The system starts with spin up along the z-axis
and is projected on the family of states

1
f 'exp yiu sPnŽ .k k ž /0

ak
with u ' , ks0, . . . , N , 2.1Ž .k N

where s is the vector of the Pauli matrices and
Ž . Ž .ns n ,n ,n a unit vector independent of k .x y z

We assume that the system evolves for a time T
Žwith projections at times T skd T ks1, . . . , N andk

1.d TsTrN . The final state is f s0 ž /0

< : < : ² < : ² < : ² < :c T s f f f PPP f f f fŽ . N N Ny1 2 1 1 0

Na a
< :s f cos q in sinN zž /N N

Na a
N < :scos 1q in tan fz Nž / ž /N N

N™`
< :™ exp ian fŽ .z N

< :sexp ian exp yiasPn f . 2.2Ž . Ž . Ž .z 0

Ž .Therefore, as N™`, c T is an eigenfunction of
the final projection operator P , with unit norm. IfN

cosQ'n and asp ,z

c T sexp ip cosQ y1 fŽ . Ž . Ž . 0

sexp yip 1ycosQ fŽ . 0

sexp yiVr2 f , 2.3Ž . Ž .0

where V is the solid angle subtended by the curve
traced by the spin during its evolution. The factor

Ž .exp yiVr2 is a Berry phase and it is due only to
Ž .measurements the Hamiltonian is zero . Notice that

no Berry phase appears in the usual quantum Zeno
context, namely when f Af ; k, because in thatk 0

Ž .case as0 in 2.2 .
To provide experimental implementation of the

Žmathematical process just described, one could in
.principle let a neutron spin evolve in a field-free

region of space. With no further tinkering, the spin
state would not change. However, suppose we place
spin filters sequentially projecting the neutron spin

Ž .onto the states of Eq. 2.1 , for ks0, . . . , N. Thus
the neutron spin is forced to follow another trajec-
tory in spin space. The essence of the mathematical
demonstration just provided is that while N measure-
ments are performed, the norm of wave function that

Ž 2 . Ž .is absorbed by the filters is NPO 1rN sO 1rN .
For N™`, this loss is negligible. Meanwhile, as a
result of these projections, the trajectory of the spin
Ž .in its space is a cone whose symmetry axis is n.
By suitably matching the parameters, the spin state
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. .Fig. 1. a Spin evolution due to Ns5 measurements. b Solid
angles.

can be forced back to its initial state after time T
w x14 .

Ž .It is interesting to look at the process 2.2 for N
finite. The spin goes back to its initial state after
describing a regular polygon on the Poincare sphere,´

Ž .as in Fig. 1a. After N -` projections the final state
is

Na a
< :c T s cos q in sinŽ . zž /N N

= < :exp yiasPn f . 2.4Ž . Ž .0

For asp the spin describes a closed path and
Np p

< : < :c T s cos q in sin exp yip fŽ . Ž .z 0ž /N N
Nr2p p

2 2 2s cos qn sinzž /N N

=
p

exp iNarctan n tanzž /ž /N

= < :exp yip f . 2.5Ž . Ž .0

The first factor in the far r.h.s. accounts for the
Ž .probability loss N is finite and there is no QZE .
Ž .We can rewrite 2.5 in the following form:

< : < :c T sr exp yib f , 2.6Ž . Ž . Ž .N N 0

where
Nr2p p

2 2 2r s cos qn sin , 2.7Ž .N zž /N N
p

b spyNarctan cosQ tan . 2.8Ž .N ž /N

Ž .In the ‘continuous measurement’ limit QZE , we
have
rs lim r s1,N

N™`

V
bs lim b sp 1ycosQ s , 2.9Ž . Ž .N 2N™`

where V is the solid angle subtended by the circular
Ž .path, viewed at an angle Q see Fig. 1a . We recover

Ž .therefore the result 2.3 .
The relation between the solid angle and the

geometrical phase is valid also with a finite number
of polarizers N. Indeed, it is straightforward to show
that the solid angle subtended by an isosceles trian-

Ž .gle with vertex angle equal to 2a Fig. 1b has the
value
V s2ay2arctan cosQ tana . 2.10Ž . Ž .2 a

Hence if the polarizers are equally rotated of an
angle 2prN, the spin describes a regular N-sided
polygon, whose solid angle is

p
V sNV s2py2 Narctan cosQ tanŽN . 2p r N ž /N

s2b , 2.11Ž .N

Ž .where we used the definition 2.8 . This result is of
w xcourse in agreement with other analyses 15 based

w xon the Pancharatnam connection 8 .
The above conclusion can be further generalized

Žto the general case of an arbitrary not necessarily
.regular polygon. Indeed, if the polarizers are rotated

Ž .at relative angles a with ns0, . . . , N, so thatn
N

2a s2p , 2.12Ž .Ý n
ns1

the solid angle is
N N

X
V s V s2py2 arctan cosQ tana .Ž .Ý ÝŽN . 2 a nn

ns1 ns1

2.13Ž .
This is also twice the Berry phase. Notice that if all

Ž .a ™0 as N™` one again obtains the limit 2.3 :n
N

X X
V s lim V s2py2 lim a cosQsV .ÝN n

N™` N™` ns1

2.14Ž .
We emphasize that these predictions for the N-`

case are not trivial from the physical point of view.
The above phases are computed by assuming that,
during a ‘projection’ a la von Neumann, the spin`
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follows a geodesics on the Poincare sphere. The´
mathematics of the projection has no such assump-
tions. The ‘postulate’s’ only job is to relate all this
projection formalism to measurements.

2.2. EÕolution with a non-zero Hamiltonian

Let us now consider the effect of a non-zero
Hamiltonian

HsmsPb , 2.15Ž .
Ž .where bs b ,b ,b is a unit vector, in generalx y z

different from n. One can think of a neutron spin in
a magnetic field. See Fig. 2.

If the system starts with spin up it would have the
following – undisturbed – evolution:

1
c t sexp yim tsPb . 2.16Ž . Ž . Ž .ž /0

Now let the system evolve for a time T with projec-
Žtions at times T skd T ks1, . . . , N and d Tsk

.TrN and Hamiltonian evolution in between. Defin-
1 0< : ² <ing P ' f f s , the 2=2 projection0 0 0 ž /0 0

operator at stage-k is
< : ² <P s f f sexp yiu sPn P exp iu sPnŽ . Ž .k k k k 0 k

2.17Ž .
and the state evolves to

N
1

c T s P exp yimd TsPb ,Ž . Ž .Ł k ž /0ks1

2.18Ž .
where here and in subsequent expressions a time-

wordered product is understood with earlier times

Fig. 2. Spin evolution with measurements and non-zero Hamilto-
nian.

Ž . x 2 Ž .lower k to the right . Using P sP , Eq. 2.180 0

can be rewritten
N

1
c T sexp yiasPn B , 2.19Ž . Ž . Ž .Ł k ž /0ks1

with

B 'P exp iu sPn exp yimd TsPbŽ . Ž .k 0 k

=exp yiu sPn P 2.20Ž . Ž .ky1 0

Ž .u '0 . The computation of B requires a bit of0 k
Ž .SU 2 manipulation. By using

w xsPA ,sPB s2 isPA=B 2.21Ž .
sPA sPB sPA s2 APB sPAŽ . Ž . Ž . Ž .

y APA sPB , 2.22Ž . Ž .
valid for c-number A and B, one gets

˜exp iusPn sPbexp yiusPn ssPb , 2.23Ž . Ž . Ž .
with

b̃ u 'bcos2uqn bPn 1ycos2uŽ . Ž . Ž .
qb=nsin2u , 2.24Ž .

which is the vector b rotated by 2u about the n-axis.
The calculation of B is now straightforward:k

˜B sP exp idusPn exp yimd TsPb uŽ . Ž .Ž .k 0 ky1

˜P sP 1q idusPny imd TsPb u PŽ .Ž .0 0 k 0

qO 1rN 2 , 2.25Ž .Ž .
where dusu yu is k-independent. Second or-kq1 k

Ž .der terms in 1rN drop out when the product 2.19
is computed for N™`, so that

N N

˜B s P 1q idusPny imd TsPb u PŽ .Ž .Ł Łk 0 k 0
ks1 ks1

N

s P q iP dusPnŽ½Ł 0 0
ks1

˜ymd TsPb u PŽ . . 5k 0

N

˜s P 1q i du n ymd Tb uŽ .Ł ½ 50 z z k
ks1

N

˜sP exp i du n ymd Tb u ,Ž .Ž .Ý0 z z k½ 5
ks1

2.26Ž .
where we have used P s P sP s P s0 and0 x 0 0 y 0

P s P sP . The continuum limit can be computed0 z 0 0
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Ž .by letting the summations in 2.26 become integrals
in dT and du . Moreover, dTrdusTra, which
enables one to change integration variable and get

Ž . N Žfor the ‘ 1,1 ’ component of Ł B all otherks1 k
.components being zero

a aT
exp in duy im b cos2uH Hz zž a0 0

q bPn n 1ycos2u q b=n sin2u duŽ . Ž . Ž . zz /
T sin2 a

sexp in ay im bz zž a 2

sin2 a
q bPn n ayŽ . z ž /2

1ycos2 a
q b=n , 2.27Ž . Ž .z /2

The final state is an eigenstate of P with unit norm,N

independent of the Hamiltonian H:

T sin2 a
c T sexp yim bŽ . zž a 2

sin2 a
q bPn n ayŽ . z ž /2

1ycos2 a
q b=nŽ . z /2

=
1exp ian y iasPn . 2.28Ž . Ž .z ž /0

Ž .The first factor in 2.28 is obviously the ‘dynamical
Ž .phase’. Note that up to a phase, c t is just f , withk

ks tNrT. Therefore

T² < < :c t H c t dtŽ . Ž .H
0

aT
² <s f exp iusPn msPbŽ .H 0a 0

= < :exp yiusPn f duŽ . 0

sin2 a sin2 a
smT b q bPn n 1yŽ .z z ž /2 a 2 a

1ycos2 a
q b=n , 2.29Ž . Ž .z 2 a

because the phases drop out in the above sandwich.
Ž .It follows that the remaining phase in 2.28 , when

the spin goes back to its initial state, is the geometri-
cal phase. When asp

1
c T sexp yiVr2 exp yimT bPn n ,Ž . Ž . Ž .Ž .z ž /0

2.30Ž .

where V is the solid angle subtended by the curve
Ž . Ž .traced out by the spin, as in 2.3 , and mT bPn nz

yields the dynamical phase, as can also be seen by
Ž .direct computation of 2.29 . We remark that if time

ordered products are looked upon as path integrals
w x16 , then our above demonstration is effectively a
path integral derivation of the geometrical phase.

A practical implementation of the process just
described would involve an experimental setup simi-

Ž .lar to the one described after Eq. 2.3 , but with a
magnetic field whose action on the spin is described

Ž .by the Hamiltonian 2.15 . If the neutron were to
evolve only under the action of the Hamiltonian, its
spin would precess around the magnetic field. How-
ever, the sequence of spin filters, which project the

Ž .neutron spin onto the states 2.1 , compel the spin to
follow the same trajectory as in the previous case
w Ž .xEq. 2.2 , i.e. a cone whose symmetry axis is n. As
above, the spin acquires a geometrical phase, but
now there is a dynamical phase as well.

2.3. A particular case

It is instructive to look at a particular case of
Ž . Ž . Ž .2.28 – 2.30 . We first note that if ms0 in 2.28

Ž .we recover 2.2 . Now let bsn. In this situation the
projectors and the Hamiltonian yield the same trajec-

Žtory in spin space although, as will be seen, at
. Ž .different rates . If ms0 so that Hs0 , the spin

evolution is only due to the projectors and the final
Ž .result was computed in 2.3

c T sexp yiVr2 f . 2.31Ž . Ž . Ž .0

If, on the other hand, there is a nonvanishing Hamil-
Ž .tonian 2.15 , but no projectors are present, a cyclic

evolution of the spin is obtained for mTsp . The
calculation is elementary and yields

c T sexp yip f . 2.32Ž . Ž . Ž .0
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Table 1
Phases for cyclic spin evolutions

Hs0 HsmsPb HsmsPb
and projections no projections and projections

f Vr2 Vr2 Vr2geom

f 0 pyVr2 mTndyn z
Ž .f sf qf Vr2 p smT Vr2qmTntot geom dyn z

cyclic evolution cyclic evolution cyclic evolution
due to projections due to field due to projections

Observe that the dynamical phase in this case is
w Ž .xmTsp ,bsn and asp in Eq. 2.29

T² < < :c t H c t dtsp n sp 1y 1ynŽ . Ž . Ž .H z z
0

spyVr2. 2.33Ž .
Ž .Therefore, the ‘p ’ phase in 2.32 can be viewed, à
w xla Aharonov and Anandan 13 , as the sum of a

Ž . Ž .geometrical Vr2 and a dynamical pyVr2 con-
tribution.

Now let both the Hamiltonian and the projectors
Ž .be present. From Eq. 2.30 , one gets

1
c T sexp yiVr2 exp yimTn . 2.34Ž . Ž . Ž . Ž .z ž /0
Notice that the value of m is now arbitrary, so that

ŽmT is not necessarily equal to p the cyclic evolu-
tion of the spin is due to the projectors, not to the

.Hamiltonian . When mT-p , the projections are too
Ž .‘fast’ and do not yield 2.32 . On the other hand,

when mT)p , the projections are too slow and
Ž .supply less phase, in comparison with Eq. 2.32 .

Only in the case mTsp do the projections yield the
Ž .right phase in 2.32 . Their presence is superfluous

in this case: one would obtain exactly the same
vector and the same phase without them. Our conclu-
sions are summarized in Table 1. In some sense, one
may say that the Hamiltonian dynamics provides a
‘natural clock’ for the phase of the wave function.

3. A gedanken experiment

An experimental implementation with neutrons
would be difficult because it would involve putting a
QZE set-up inside an interferometer in order to
measure phase. We therefore restrict ourselves to a
‘gedanken experiment’ based on the use of 3He as a

w x w xneutron polarization filter 17 . It is well known 18
that Helium 3 is ‘black’ to neutrons but polarized

3He only absorbs one spin state of a neutron beam –
hence acts as a 50% absorber of a beam; the rest of it
emerges fully polarized. In practice an external mag-
netic field is used to maintain the polarization axis of
the 3He. If this external bias field were to be given a
slow twist along a longitudinal axis, the state of
polarization of the 3He should follow the direction of
the twist. A neutron beam propagating through a cell
of high-pressure polarized 3He along an axis aligned
with the direction of twist will become fully polar-
ized and should develop a Berry phase according to
the argument of the previous section.

From an experimental perspective a significant
problem is that we so far lack a notion of slowness
Ž .as when we speak of ‘slow twist’ of the B field . In
the previous calculation, it is implicitly assumed that

Ž .u changes more slowly than t time : in other words,
the relaxation processes in the 3He are given enough

Ž .time are fast enough to function as a polarizer. A
full treatment of this problem should therefore de-
scribe the physics of the projection process. We now
tackle this issue and see that the notion of slowness
can be given quantitative meaning in terms of a
condition for adiabaticity.

In practice, the absorption of the non-selected
spin state occurs over a finite distance, of the order
of one or two centimeters. This situation can be

Žmodeled via the following family of effective non-
.hermitian Hamiltonians:

< H: ² H <H syiV f f , 3.1Ž .k k k

where V is a real constant and

0Hf 'exp yiu sPnŽ .k k ž /1

ak
with u ' , ks0, . . . , N . 3.2Ž .k N

² < H: w Ž .xNote that f f s0 see Eq. 2.1 . We firstk k



( )P. Facchi et al.rPhysics Letters A 257 1999 232–240238

Ž3assume, for simplicity, that no external He align-
.ing magnetic field is present. We define

H < H: ² H <P ' f fk k k

sexp yiu sPn P H exp iu sPn ;Ž . Ž .k 0 k

H < H: ² H <P s f f . 3.3Ž .Ž .0 0 0

Obviously P Hs 1yP , where P was defined ink k k
Ž .2.17 . The evolution engendered by the above
Hamiltonian reads

eyi Hkt sP qeP H
k k

1 0sexp yiu sPn exp iu sPnŽ . Ž .k kž /0 e

'PX , 3.4Ž .k

Ž .where inserting "

e'eyVt r " 3.5Ž .
is a parameter yielding an estimate of the efficiency
of the polarizer. One can estimate a minimal value

Ž .for V: for a thermal neutron speed Õ,2000 mrs
and an absorption length ll on the order of 1 cm for
the wrong-spin component, one gets ts llrÕ,5ms
and one obtains a good polarizer for V)"rt,
10y29 J ,10y7 meV.

The evolution can be computed by using the
X 1r2 HŽ .technique of Section 2 P sP qe P :( 0 0 0

N
1X X X

c T sexp yiasPn P B , 3.6Ž . Ž . Ž .( Ł0 k ž /0ks1

with TsNt and
N N

X X XB s P 1q idusPn PŽ .( (Ł Łk 0 0
ks1 ks1

N
X X Xs P q i P dusPn PŽ .( (Ł 0 0 0

ks1
N

1r21q idu n idue nz y
s , 3.7Ž .

1r2ž /idue n e 1y idu nŽ .q z

where n 'n " in . The evaluation of the above" x y

matrix product when N™` is lengthy but straight-
forward. One gets
c

X T sexp yiasPn MMf , 3.8Ž . Ž . Ž .0

where
eya b

MMs
D

Ž . Ž . Ž .D ch aD q b q in sh a D in sh a DŽ .z y
= ,ž /Ž . Ž . Ž .in sh aD D ch aD y b q in sh aDŽ .q z

3.9Ž .

with
VT

2(bs , Ds b q2 ibn y1 . 3.10Ž .z2 a"

We are interested in the limit of large bsVTr2 a".
Indeed, larger values of b correspond to more ideal
polarizers. In fact gsVr" represents the absorption
rate of the wrong component of the spin, while

Žvs2 arT is the angular velocity of precession the
.spin describes an angle of 2 a in time T . The

parameter bsgrv is the ratio of these two quanti-
ties. Large values of b imply
g4v , 3.11Ž .
i.e., an absorption rate much larger than the velocity
of precession. In other words, the spin rotation must
be sufficiently slow to allow the absorption of the
wrong component of the spin. By introducing the
neutron speed Õ, one can define the absorption length
llsÕrgsÕ"rV and the length covered by the neu-
tron while rotating for 1 rad, LsÕrvsÕTr2 a.

Ž .Hence 3.11 reads
L4 ll . 3.12Ž .
These are all conditions of adiabaticity.

Ž .In the large b limit, using the definition 3.10 ,
Ž .3.9 becomes

eaŽDyb.
Dqbq in inz y

MMs ž /in Dyby in2 D q z

qO ey2 abŽ .
1yn2 nz y

1ya i
2b 2bsexp ianŽ .z nq� 0i 0

2b
1

qO . 3.13Ž .2ž /b
Ž .Remembering the definition of b in 3.10 , one gets

"a2 n2 y1 "anŽ .z y
1q i

VT VT
MMsexp ianŽ .z

"anq� 0i 0
VT

22 a"
qO ™exp ian P ,Ž .z 0ž /ž /VT

VT
when ™`. 3.14Ž .

2 a"
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The above formula yields the first corrections to an
ideal, purely adiabatic evolution. Basically, the sys-
tem is projected on slightly different directions,
thereby rotating in spin space. But if the system ‘on

Ž .its own’ i.e., through its dynamics manages to
rotate significantly between projections, then more
will be absorbed on the next projection and it will
not follow the rotating field, at least not without loss

Ž .of probability or intensity .
It is interesting to note that the same result can be

obtained by considering a continuous version of the
Ž .effective Hamiltonian 3.1

H t syiVP H t syiVU † t P H U t ,Ž . Ž . Ž . Ž .0

3.15Ž .
where

a
U t sexp i t sPn 3.16Ž . Ž .ž /T

Ž . Ž .is a unitary operator rotation . The state vector c t
satisfies the Schrodinger equation¨
iE c t sH t c t . 3.17Ž . Ž . Ž . Ž .t

Consider now the following rotated vector:

c̃ t sU t c t . 3.18Ž . Ž . Ž . Ž .
It is easy to prove that it satisfies the equation

˜ ˜ ˜iE c t sHc t , 3.19Ž . Ž . Ž .t

where

˜ ˙ † †Hs iU t U t qU t H t U tŽ . Ž . Ž . Ž . Ž .
a

Hsy sPny iVP 3.20Ž .0T

is independent of t. One then gets
† ˜c t sU t c tŽ . Ž . Ž .

a
˜sexp yi t sPn exp yiHt c 0 ,Ž .Ž .ž /T

3.21Ž .
where

˜ HHTsyasPny iVTP syaM ,0

n nz y
Ms , 3.22Ž .ž /n yn q i2bq z

Ž .b being defined in 3.10 . Hence one obtains

˜exp yiHT sexp iaM sMM 3.23Ž . Ž .Ž .

Ž . Ž .and 3.21 yields 3.8 . Observe that
sPn

HH̃syv y ig P , 3.24Ž .02
from which it is apparent the previous interpretation
of the coefficients v and g .

The above calculation was performed by assum-
ing that no external field is present. However, we do
need an external B field, in order to align 3He. Its
effect can be readily taken into account by noticing
that, when the neutron crosses the region containing
polarized 3He, if the conditions for adiabaticity are

Ž .satisfied, the neutron spin will always be almost
parallel to the direction of 3He and therefore to the
direction of the magnetic field. The resulting dynam-
ical phase is therefore trivial to compute and reads
f ,mBTr". In order to obtain the geometricdyn

phase in a realistic experiment, such a dynamical
phase should be subtracted from the total phase
acquired by the neutron during its interaction with
3He. Incidentally, notice that this is experimentally
feasible: one can take into account the contribution
of a large dynamical phase due to the magnetic field

w xand neatly extract a small Berry phase 19 . The
novelty of our proposal consists in the introduction
of polarizing 3He to force the neutron spin to follow
a given trajectory is spin space.

An alternative realization relies on a set of dis-
crete 3He polarization filters with progressively tilted
polarization axes, as a finite-difference approxima-
tion to the system discussed above. Such a system
would be a neutron analog of a set of polaroid filters
with progressively tilted axes through which a pho-

Žton beam propagates with little or no loss in the
. w xlimit of small angles as proposed by Peres 2 .

However, in the case discussed in this Letter, the
axes of the neutron polarizers need not belong to a
single plane and the neutron can acquire a Berry
phase as well as change in polarization direction.

After completion of this paper we learned of
interesting related work by Berry and Klein and by

w xPati and Lawande. See Refs. 20,21 .
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