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2 Dipartimento di Fisica e Chimica, Università di Palermo, I-90123 Palermo, Italy
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4 INFN, Sezione di Bari, I-70126 Bari, Italy
5 Institute of Physics, Nicolaus Copernicus University, 87-100 Toruń, Poland
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Abstract
We analyze the non-relativistic problem of a quantum particle that bounces back
and forth between two moving walls. We recast this problem into the equivalent
one of a quantum particle in a fixed box whose dynamics is governed by an
appropriate time-dependent Schrödinger operator.

PACS numbers: 03.65.−w, 03.65.Db, 03.65.Xp

1. Introduction

In 1949 Fermi [1] proposed a model for cosmic ray production in which a particle moves in
inhomogeneous magnetic fields. This problem was reconsidered by Ulam [2], who introduced
the so-called Fermi accelerator in which a ball bounces back and forth between two oscillating
walls. He numerically discovered that such a system displays a very irregular behavior, and
since then it has become a paradigmatic model to illustrate the chaotic nature of stochastic
trajectories in systems with two degrees of freedom [3]. A non-relativistic quantum version
of this problem was first studied, to the best of our knowledge, by Doescher and Rice [4],
who analyzed the case in which one of the walls is static while the second one moves with a
linear velocity. A number of articles followed, studying the problem from different aspects. In
particular, the solvability of the model was investigated in a series of papers by Dembiński,
Makowski and others [5–8] who exhibited several exact and perturbative solutions. Moreover,
Dodonov et al [9] analyzed uniformly moving walls, including the cases of adiabatic motion
and almost sudden changes of the wall position, while Munier et al [10] and Konishi and Paffuti
[11] investigated the behavior of the average energy. The problem in higher dimensions was
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considered by Lenz et al [12] and by Del Campo and Boshier [13], who focused on Bose–
Einstein condensates and experimental realizations.

Generally speaking, problems of this sort are tackled by searching solutions of the
time-dependent Schrödinger equation related to the appropriate (time-dependent or static)
Hamiltonian satisfying time-dependent boundary conditions. Such a direct approach, however,
overviews the structural difficulty that the problem is ill-posed on its own, since one is
requested to find solutions belonging to a time-dependent Hilbert space. In other words, the
constraints characterizing the physical problem under scrutiny (no accessibility into time-
dependent regions of the line) are mathematically taken into account by writing down a
dynamical equation defined within a continuously time-changing space domain. This is an
ill-posed problem since t is among the independent variables of the same equation. In this
direction, a rigorous analysis of time-dependent Schrödinger operators and/or time-dependent
domains can be found in the work of Yajima [14, 15], Dell’Antonio et al [16] and Posilicano
et al [17, 18].

The quantum bouncer problem is also interesting in the general context of quantum
boundary conditions. Indeed, the behavior of the wave function at the boundary must reflect the
quantum mechanical necessity to define observables in terms of self-adjoint operators [19–22].
The most commonly used boundary conditions in physics are Dirichlet (vanishing wave
function at the boundary), Neumann (vanishing normal derivative), and periodic ones. The
interplay among different boundary conditions, with focus on an interval of the real line, was
analyzed in [23, 24] and their role and importance has recently been stressed in an interesting
article [25], in which varying boundary conditions are viewed as a model of spacetime topology
change. Notable applications arise in the context of the Casimir effect and its dynamical
version, giving rise to photon generation in a microwave cavity with time-dependent boundary
conditions [26, 27].

In this paper, we recast the problem of a quantum particle in a box with moving walls
into the problem of a quantum particle placed in a box with fixed walls and governed by a
time-dependent Schrödinger operator. Important properties of the system will be analyzed,
such as the rate of energy change. The structure of the paper is as follows. In section 2 we
introduce the physical problem and the relevant Hamiltonian model, and introduce the unitary
transformation that enables us to recast the original problem into a problem with fixed boundary
conditions. In section 3 we derive the rate equation for the energy of the particle, singling
out the role of contact terms with the walls, expressed by the presence of time derivatives of
the wave function at the positions of the two walls. In section 4 we complete our treatment
by including a potential acting on the particle. Finally, in section 5 we give some concluding
remarks and discuss future perspectives.

2. Hamiltonian model

2.1. A particle bouncing between moving walls

Consider a free massive particle in a one-dimensional box delimited by two walls at positions
a = −l/2 + d and b = l/2 + d. The box therefore has width l > 0 and is centered at d ∈ R,
where l and d are functions of time, l(t) and d(t).

If the walls are still, the dynamics is described by the Schrödinger equation

i!
d
dt

ψ (t) = p2

2m
ψ (t) (1)

2
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in the Hilbert space L2(Il,d ) of square integrable functions on the interval

Il,d = [a, b] =
[

d − l
2
, d + l

2

]
. (2)

Here p2 = −!2 d2

dx2 , acting on functions belonging to H2(Il,d ), the Sobolev space of square
integrable functions with square integrable second derivative, and vanishing at the ends
(Dirichlet boundary conditions). Namely,

Dl,d =
{
ψ ∈ H2(Il,d ), ψ

(
d − l

2

)
= ψ

(
d + l

2

)
= 0

}
. (3)

However, when the walls are moving, the interpretation of an apparently innocuous equation
such as (1) requires some care. At first sight, if interpreted, as above, as an equation among
different Hilbert spaces, it is meaningless. Indeed, the time derivative

d
dt

ψ (t) = lim
ε→0

ψ (t + ε) − ψ (t)
ε

, (4)

would involve the sum of two vectors that belong in general to different Hilbert spaces
L2(Il(t),d(t)) $= L2(Il(t+ε),d(t+ε)). Therefore, in order to correctly formulate the problem, one
has to give a meaning to the time derivative.

This can be accomplished by embedding L2(Il,d ) in the larger Hilbert space of a particle
on a line L2(R) viewed as the direct sum

L2(R) = L2(Il,d ) ⊕ L2(Ic
l,d

)
, (5)

where Xc = R \ X denotes the complement of the set X . Thus, the kinetic energy operator in
the common enlarged space is given by the Hamiltonian

H0(l, d) =
p2

l,d

2m
= − !2

2m
d2

dx2
⊕l,d 0, (6)

acting on wave functions of the form ψ + φ with ψ ∈ Dl,d and φ ∈ L2
(
Ic
l,d

)
. A heuristic

derivation of the Hamiltonian (6) from the Hamiltonian of a free particle on a line, with the
moving walls implemented by a quantum Zeno dynamics [28], is given in the appendix.

It is worth noticing that the direct sum decomposition both in (5) and in (6), in the case
of moving walls, is in fact time-dependent. Therefore, one has to cope with a Schrödinger
equation with a time-dependent Hamiltonian on a time-dependent domain. The common attack
strategy of this kind of problem is to describe the evolution by unitarily equivalent Schrödinger
operators acting on a common fixed domain. We will also be following this approach in the
next sections.

2.2. Reduction to constant boundary conditions (static domain)

The intervals Il,d with l > 0 can be mapped to a standard reference interval

I = I1,0 =
[
− 1

2 , 1
2

]
, (7)

via a translation x → x − d followed by a dilation x → x/l. These transformations of R can
be lifted to transformations on L2(R), implemented by one-parameter (strongly continuous)
unitary groups:

(T (d)ψ )(x) = ψ (x − d), (D(s)ψ )(x) = e−s/2ψ (e−sx). (8)

Let us therefore consider the unitary transformation

U (l, d) : L2(R) → L2(R), U (l, d) = D(ln l)†T (d)† = D(− ln l)T (−d), (9)

3
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which acts as

(U (l, d)ψ )(ξ ) =
√

lψ (lξ + d). (10)

This transformation obviously maps L2(Ic
l,d ) onto L2(Ic), and, more interestingly, the domain

(3) onto the fixed domain D = U (l, d)Dl,d

D =
{
φ ∈ H2(I), φ

(
− 1

2

)
= φ

( 1
2

)
= 0

}
⊂ L2(I), (11)

describing Dirichlet boundary conditions in a fixed box I. Moreover, the Hamiltonian (6) is
mapped into

H(l) = UH0U† = 1
l2

p2

2m
⊕ 0 = − 1

l2

!2

2m
d2

dx2
⊕ 0, (12)

with fixed domain D ⊕ L2(Ic).
It is worth noticing that the unitary transformation (9) yields constant boundary conditions

only when the latter involve only the wave function or only its derivative. This is the case of
Dirichlet and Neumann boundary conditions but not the Robin ones [23],

ψ ′
(

d ± l
2

)
= αψ

(
d ± l

2

)
. (13)

Let us now take a closer look at H(l). When one goes from the interval Il,d to the fixed
interval I, through the unitary transformation U , the eigenfunctions of H(l) are a rescaled
version of the ones of H0, while the eigenvalues scale by a factor l−2 (the prefactor of p2),
since the distance between the walls changes by a factor l. This is formally expressed by the
transformation law of the momentum operator on the line:

U (l, d)pU (l, d)† = D(ln l)† pD(ln l) = p
l
, (14)

since the translation group T (d) = exp(−id p/!) commutes with its generator p.
From now on, for the reader’s convenience, we will denote the (relevant parts of the) wave

functions by ψ (x) with x ∈ Il,d and by φ(ξ ) with ξ ∈ I, in the frame with moving and fixed
walls, respectively.

The Schrödinger equation in the frame with the fixed box will contain additional
geometrical terms, induced by the time-dependent transformation φ(t) = U (l(t), d(t))ψ (t).
Taking into account the Schrödinger equation in the original frame

i! d
dt

ψ (t) = H0(l(t), d(t))ψ (t), (15)

we obtain

i! d
dt

φ = (H(l) + i!U̇ (l, d)U†(l, d))φ, (16)

in an appropriate domain.
Let us compute the geometric contribution i!U̇U† step by step. First of all the action of

U̇ = dU (l(t), d(t))/dt on a test function ψ :
(

dU
dt

ψ

)
(ξ ) = d

dt

(√
lψ (lξ + d)

)
= l̇

2
√

l
ψ (lξ + d) +

√
l(l̇ξ + ḋ)ψ ′(lξ + d). (17)

Therefore, being

(U†(l, d)φ)(x) = (T (d)D(ln l)φ)(x) = 1√
l
φ

(
x − d

l

)
, (18)

we have

i!dU
dt

U†φ(ξ ) = i
!
2

l̇
l
φ(ξ ) + i!

(
l̇
l
ξ + ḋ

l

)

φ′(ξ ), (19)

4
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that is

i!dU
dt

U† = − l̇
l

(
xp − i

!
2

)
− ḋ

l
p, (20)

with x and p the standard position and momentum operators. Thus, the geometric generator of
the unitary transformation reads

K(l, d) = i!dU
dt

U† = − l̇
l

x ◦ p − ḋ
l

p, (21)

where A ◦ B = (AB + BA)/2 is the symmetrized (Jordan) product of the operators A and B,
and the canonical commutation relation [x, p] = i! has been used.

By plugging expressions (12) and (21) into equation (16), we finally obtain the expression
of the Schrödinger equation for the transformed state in the reference frame with fixed walls:

i! d
dt

φ = (H(l) + K(l, d))φ =
(

1
l2

p2

2m
− l̇

l
x ◦ p − ḋ

l
p

)

φ. (22)

Apart from the term p2/(2ml2) that we discussed above, in this new Schrödinger equation
we find two geometric terms. Both of them are due to the fact that application of the unitary
transformation fixes the walls. This consists on a translation T (d(t)) = exp(−id(t)p/!),
generated by the momentum operator p with domain H1(R), and a dilation D(ln l(t)) =
exp(−i ln l(t)x ◦ p/!), generated by the virial operator x ◦ p on its maximal domain in L2(R).
Incidentally, we notice that the emergence of the virial operator in equation (22) was recently
advocated by Jarzynski [29] on the basis of symmetry considerations.

Let us finally show that the fixed domain D is a domain of self-adjointness for the total
Hamiltonian in (22). Notice that K(l, d) is relatively bounded with 0 relative bound with respect
to H(l), for every d ∈ R and l > 0. Indeed, p is p2-bounded on D and ‖xpφ‖ ! ‖pφ‖/2 for
any φ ∈ D. Thus, since K(l, d) with domain D is a symmetric operator, by the Kato–Rellich
theorem the total Hamiltonian H(l)+K(l, d) with domain D(H(l)+K(l, d)) = D(H(l)) = D
is self-adjoint.

Since for any pair of differentiable functions d(t) and l(t), with l(t) > l0, for some l0 > 0,
t +→ H(l(t))+K(l(t), d(t)) is a one-parameter family of Schrödinger operators on a common
domain of self-adjointness D, by standard abstract methods (see e.g. theorem X.70 in [20]) the
time-dependent Schrödinger equation (22) is well defined for any initial condition φ(0) ∈ D,
and yields a unique unitary propagator.

Equation (22) is a central result of this paper. We now check its consequences on some
interesting physical situations.

2.3. Some examples

Consider the case in which there is only a translation of the walls without dilation:

l̇ = 0, d(t) = d0 + vt. (23)

The Schrödinger operator in the static reference frame, by assuming l = 1, is

H + K = p2

2m
− vp (24)

which is exactly the Hamiltonian transformed according to the Galilean transformation, as
expected.

On the other hand, if we consider the case (constant acceleration g)

l̇ = 0, d(t) = d0 + 1
2 gt2, (25)

5
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we find:

H = p2

2m
− gt p, (26)

(taking again l = 1). In such a case, by applying the gauge (unitary) transformation

G(t) : L2 (
− 1

2 , 1
2

)
→ L2 (

− 1
2 , 1

2

)
: φ +→ χ = G(t)φ, (27)

with

χ (ξ ) = (G(t)φ)(ξ ) = e
i
! (mgξ t− 1

6 mg2t3)φ(ξ ), (28)

the domain D is left invariant, G(t)(D) = D, and the Hamiltonian becomes

G(t)HG†(t) = p2

2m
− 1

2
mg2t2. (29)

Moreover,

i!Ġ(t)G†(t) = −mgx + 1
2 mg2t2, (30)

so that the new Schrödinger equation is

i! d
dt

φ(t) =
(

p2

2m
− mgx

)
φ(t), (31)

and describes a particle in a constant gravitational field, in agreement with the equivalence
principle. Notice, however, that the particle is in a box (a falling elevator).

3. Energy rate equation

Let us consider an initial state φ(0) at time t = 0. It will evolve into the state φ(t) solution of
the Schrödinger equation (22).

The energy of the system has a rate given by

Ė(t) = d
dt

〈φ|H(l)φ〉 = i
!

(〈φ|KHφ〉 − 〈KHφ|φ〉) + 〈φ|Ḣφ〉, (32)

with K(l, d) given by (21), with domain

D(K) = { f ∈ H1(I), ξ f ′(ξ ) ∈ L2(I)}, (33)

and φ ∈ D(KH), where

D(KH) =
{

f ∈ H3(I), f
(
− 1

2

)
= f

( 1
2

)
= 0

}
. (34)

A double integration by parts gives

d
dt

〈φ(t)|H(l(t))φ(t)〉 =− !2

2ml3
[(l̇(t) ξ + ḋ(t))|φ′(ξ , t)|2]

1
2

− 1
2
, (35)

with φ′(ξ , t) = ∂ξφ(ξ , t).
In the original frame, since φ′(ξ , t) = l3/2ψ ′(lξ + d, t), this yields

Ė(t) = d
dt

〈ψ (t)|H0(l(t), d(t))ψ (t)〉 =− !2

2m
[ḃ(t)|ψ ′(b(t), t)|2 − ȧ(t)|ψ ′(a(t), t)|2], (36)

with a = −l/2 + d and b = +l/2 + d the positions of the walls. As expected, due to the
movement of the walls, the energy change is due only to boundary terms depending on the
velocities of the walls. Indeed, within the walls the problem is that of a free particle, so that
the energy changes only because of the presence of the moving walls. The case d = l

2 is the
standard Fermi–Ulam accelerator model, where one of the two walls is still at a = 0, while
the other is at b = l. In such a case the rate (36) particularizes to the result heuristically found
by Konishi and Paffuti [11].

6
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3.1. Two examples

Let us now consider two examples that are valid within the limits of validity of perfectly
reflecting walls. Assume

l = l0 + vt, d = 0. (37)

In this case the Schrödinger equation in the reference frame with fixed walls becomes

i!
d
dt

φ = 1
l0 + vt

(
1

l0 + vt
p2

2m
− vξ ◦ p

)
φ, (38)

while the energy rate is

Ė(t) = − v

(l0 + vt)3

!2

2m
1
2

[∣∣∣∣φ
′
(

1
2
, t

)∣∣∣∣
2

+
∣∣∣∣φ

′
(

−1
2
, t

)∣∣∣∣
2
]

. (39)

As another example, we take

l = l0 + sin(ωt), d = 0. (40)

The Schrödinger equation in the reference frame is

i! d
dt

φ = 1
l0 + sin(ωt)

(
1

l0 + sin(ωt)
p2

2m
+ ω cos(ωt)ξ ◦ p

)
φ, (41)

and the energy rate reads

Ė(t) = − ω cos(ωt)
(l0 + sin(ωt))3

!2

2m
1
2

[∣∣∣∣φ
′
(

1
2
, t

)∣∣∣∣
2

+
∣∣∣∣φ

′
(

−1
2
, t

)∣∣∣∣
2
]

. (42)

3.2. A remark on domains

In the derivation of the energy rate given above we have been somewhat cavalier about domains.
Formally, expression (32) is nothing but the expectation value of the commutator [K, H] (plus
the expectation of Ḣ). However, as written there, that expression is valid in a larger domain
than D([K, H]), contained in its form domain. We now show that such an extension is needed,
since for functions in D([K, H]) the energy rate identically vanishes.

Let us take a closer look at the domains by focusing on their relevant part in L2(I). The
Hamiltonian H is defined on the Dirichlet domain (11), D(H) = D, while (the restriction of)
K is defined on D(K) = H1(I), so that the domain of the commutator is

D([K, H]) = {φ ∈ D(K), Kφ ∈ D(H)} ∩{ φ ∈ D(H), Hφ ∈ D(K)}
=

{
φ ∈ H3(I), φ

(
− 1

2

)
= φ

( 1
2

)
= 0, φ′ (− 1

2

)
= φ′ ( 1

2

)
= 0

}
. (43)

As a consequence, for every φ ∈ D([K, H]), one gets from (35)

d
dt

〈φ(t)|H(l)φ(t)〉 = 0. (44)

This means that the space D([K, H]) is too small for our purposes so we have to consider a
larger space, such as D(KH) in (34), which is contained in the form domain of the commutator.

7
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4. Adding a potential

In order to complete our treatment, we consider now the case in which the particle is confined
in a moving and dilating box, subject to the action of a time-dependent potential. In such a
situation, the Hamiltonian of the system is given by

H1(l, d, t) =
(

− !2

2m
d2

dx2
+ V (x, t)

)
⊕l,d 0, (45)

on the domain Dl,d ⊕ L2(Ic
l,d ). We assume that V (·, t) : Il,d → R is a measurable function

such that H1(l, d, t) is self-adjoint. For this purpose it suffices, e.g., that V (·, t) ∈ L2(Il,d ) for
every t, l, and d.

Under the action of the unitary transformation U , the potential is transformed in a simple
way:

Ṽ (·, t) = U (l, d)V (·, t)U†(l, d), Ṽ (ξ , t) = V (lξ + d, t). (46)

The rate equation for the energy of the particle is given by

Ė1(t) = d
dt

〈ψ (t)|H1(l, d, t)ψ (t)〉 = i
!

(〈φ|KHφ〉 − 〈KHφ|φ〉) + 〈φ|Ḣφ〉

+ i
!

(〈φ|KṼφ〉 − 〈KṼφ|φ〉) + 〈φ| ˙̃Vφ〉. (47)

Since ˙̃V = −i/![K, Ṽ ] + U∂V/∂tU†, and considering equation (32), one gets

Ė1(t) = Ė(t) + 〈φ|U ∂V
∂t

U†|φ〉. (48)

It is worth noting that while a detailed evaluation of the mean value of i/![K, H] + Ḣ
gives rise to contact terms, in the case of i/![K, Ṽ ] + ˙̃V no similar contributions appear. This
is due to the fact that H is a differential operator, while Ṽ is simply a multiplication operator.

As a special case, let us consider the situation where V is essentially a static potential,
meaning that there exists a certain ϕ ∈ L2

loc(R), independent of time, such that V (x, t) = ϕ(x)

for x ∈ Il,d and V (x, t) = 0 elsewhere. In this case it turns out that the presence of the potential
does not add extra terms to the energy variation rate. Formally, time derivatives of V can
produce δ-functions at the border, but since the wave function satisfies Dirichlet boundary
conditions, the net result of the integration in equation (48) is zero.

5. Conclusions

We have analyzed the problem of the non-relativistic quantum bouncer. Our focus has been
on the very structure of the problem and on the possible difficulties of framing it in a rigorous
mathematical framework. The first question that we have tackled is the correct formulation of
the problem in mathematical terms, avoiding the use of equations defined in different Hilbert
spaces at different times. To this end, we have used an extended Hilbert space and defined
all the operators as zero outside the box and non-zero (with their standard action) inside the
box. Subsequently, to effectively solve the relevant dynamical problem, we have exploited
a unitary transformation that converts the original problem into the problem of a particle
moving in a fixed box but governed by a time-dependent Hamiltonian. This has required
a proper redefinition of the problem, from that of a system evolving under time-dependent
boundary conditions into that of a system suitably evolving under fixed boundary conditions.
In such a way, we have ended up with a family of time-dependent Hamiltonian operators with
a common domain of self-adjointness. As a consequence, the time-dependent Schrödinger

8
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equation is well-defined for any initial vector in the common domain, and the existence of a
unique unitary propagator is assured.

An interesting aspect of our analysis is the possibility to write down a general rate equation
describing the energy change undergone by the particle. In fact, also from a classical point of
view, a particle interacting with moving walls is subject to some variation of kinetic energy, and
this has a quantum mechanical counterpart, well expressed by the contact terms in equation
(35). Moreover, we provided a further development by considering the effects of a potential.
The relevant new terms in the rate equation of the energy do not include contact terms.

A possible extension of our results concerns the analysis of different boundary conditions
and/or boxes in two- and three-dimensional spaces.

Appendix. Building up the walls by a product formula

We derive here the Schrödinger equation for the static frame, starting from the Schrödinger
equation of a free particle on a line and constructing the moving walls as the limit of infinitely
time-dependent spatial projections, a limit known as quantum Zeno dynamics [28]. Consider
the projections

P(t) = χ(−l(t)/2+d(t), l(t)/2+d(t))(x), (A.1)

χA being the characteristic function of the set A. Then P(t) = U†PU , with P = χ(− 1
2 , 1

2 )
the projection on the moving box. If we discretize time: tk = kt/N where k = 0, . . . , N, the
evolution in the moving box is approximated by the operator (! = 1):

WN (t) = P(tN ) e− iTt
N · · · e− iTt

N P(t1) e− iTt
N P(t0)

= U†(tN )

N∏

k=1

[
PU (tk) e− iTt

N U†(tk−1)P
]
U (0), (A.2)

where T = p2

2m is the kinetic energy operator on the whole line R and we use the notation
U (tk) = U (l(tk), d(tk)). Now we formally compute [30]

PU (tk) e− iTt
N U†(tk−1)P = exp

(
− it

N
P(T (tk−1) + iU̇ (tk−1)U†(tk−1))P

)
P + O

(
t2

N2

)
, (A.3)

so that, in the limit N → ∞

W (t) = lim
N→∞

WN (t) = U†(t)T e−i
∫ t

0 P(T (s)+iU̇ (s)U†(s))PdsPU (0), (A.4)

T denoting time-ordering. The evolution in the original frame is therefore

ψ (t) = W (t)ψ (0), (A.5)

while in the static reference frame

φ(t) = U (t)W (t)U†(0)φ(0) = T e−i
∫ t

0 P(T (s)+iU̇ (s)U†(s))PdsPφ(0). (A.6)

In conclusion, the Schrödinger equation in the frame with the fixed box reads

iφ̇(t) = (H(t) + iU̇ (t)U†(t))φ(t), (A.7)

where H is the operator defined in equation (12).
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