
Phase Space Tweezers for Tailoring Cavity Fields by Quantum Zeno Dynamics

J.M. Raimond,1 C. Sayrin,1 S. Gleyzes,1 I. Dotsenko,1 M. Brune,1 S. Haroche,1,2 P. Facchi,3,4 and S. Pascazio5,4

1Laboratoire Kastler Brossel, CNRS, ENS, UPMC-Paris 6, 24 rue Lhomond, 75231 Paris, France
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We discuss an implementation of quantum Zeno dynamics in a cavity quantum electrodynamics

experiment. By performing repeated unitary operations on atoms coupled to the field, we restrict the field

evolution in chosen subspaces of the total Hilbert space. This procedure leads to promising methods for

tailoring nonclassical states. We propose to realize ‘‘tweezers’’ picking a coherent field at a point in phase

space and moving it towards an arbitrary final position without affecting other nonoverlapping coherent

components. These effects could be observed with a state-of-the-art apparatus.
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In the quantum Zeno effect (QZE) [1], repeated projective
measurements block the evolution of a system in a non-
degenerate eigenstate of the measured observable. It has
been observed on two-level systems [2] and on a harmonic
oscillator in a cavity quantum electrodynamics (CQED)
experiment [3]. A quantum Zeno dynamics (QZD) [4] takes
place when the system is not confined to a single state, but
rather evolves under the action of its free Hamiltonian H
in a multidimensional subspace of its Hilbert space. This can
be achieved either by repeated measurements of an observ-
able with degenerate eigenvalues, or by repeated actions
of a unitary kick UK with multidimensional invariant
subspaces, the two procedures being physically equivalent
[5]. We focus here on the latter case, related to the
so-called ‘‘bang-bang’’ control [6] and NMR manipulation
techniques [7].

The system evolution is stroboscopic, alternating small
free evolution steps described by Uð�tÞ ¼ expð�iH�t=@Þ
with UK kicks. The succession of N steps (fixed dura-
tion t ¼ N�t) corresponds to the unitary UZðNÞ ¼
½UKUðt=NÞ�N . It is, in the N ! 1 limit, the evolution
under an effective Hamiltonian HZ ¼ P

�P�HP� where

the P�’s are the projectors on the invariant subspaces of

UK [4]. By choosing properly UK (or equivalently the
repeatedly measured observable), one can tailor the system
evolution, leading to decoherence control [5], state purifi-
cation [8] and quantum-gate implementation [9]. QZD can
also inhibit entanglement between subsystems, making a
quantum evolution semiclassical [10].

In this Letter, we propose a CQED implementation of
the bang-bang QZD control. We exploit the nonlinearity
of the atom-cavity system [11] to implement a photon-
number-selective UK. The field dynamics in its Hilbert
space H is confined in two orthogonal subspaces H<s

and H>s, corresponding to photon numbers smaller or
larger than a preset value s. This leads to novel methods of

nonclassical field states preparation and tailoring. We pro-
pose a ‘‘phase space tweezer’’ picking selectively a coher-
ent state component of a quantum superposition and
moving it at will in phase space independently from the
other components.
Our proposal could be implemented in a microwave

CQED experiment with circular Rydberg atoms and a super-
conducting millimeter-wave cavity [11]. The cavity C
[Fig. 1(a)] is crossed by a slow beam of Rubidium ground
state atoms, in an ‘‘atomic fountain’’ arrangement. Close
to their turning point, atoms are nearly at rest. One
of them is promoted to the circular level h (principal quan-
tum number 49) using static and radio-frequency electric

FIG. 1 (color). (a) Proposed experimental scheme. A slow
atomic beam extracted from a 2D-magneto-optical trap (bottom)
forms an atomic fountain with atoms nearly at rest in the center
of the high-quality microwave Fabry-Perot cavity C (only one
mirror shown). Sources S and S0 address, respectively, the
dressed atomic levels and the cavity mode. Electrodes around
the cavity mirrors generate the electric fields preparing the
circular state shown in the center. (b) Scheme of the dressed
atomic levels. The arrow indicates the photon-number selective
transition addressed by S for s ¼ 1.
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fields. This operation does not change the state of C, tuned
on resonance with the 51.1 GHz transition between g and e
(50 and 51 circular states). The analysis that follows pertains
to the dynamics of this single atom and the cavity.

The source S drives the h ! g transition near 54.3 GHz.
It does not couple directly to the off-resonant cavity. It
realizes UK by probing the eigenstates of the atom-cavity
system [Fig. 1(b)]. The energies of the jh; ni states (atom in
h with n photons) do not depend on the atom-cavity
coupling, since C is far off-resonance from the h ! g
transition. The source S couples jh; ni to the dressed states
j�; ni ¼ ðje; n� 1i � jg; niÞ= ffiffiffi

2
p

, which are superposi-
tions of the degenerate uncoupled states je; n� 1i, jg; ni.
The splitting between dressed states is�

ffiffiffi
n

p
where� is the

vacuum Rabi frequency. Hence, the jh; ni ! jþ; ni tran-
sition frequency depends upon n. We tune S to perform on
the jh; si ! jþ; si transition a 2� Rabi pulse whose am-
plitude is weak enough (and its duration correspondingly
long enough) not to appreciably affect jh; ni with n � s. It
results in the transformation jh; ni ! ð�1Þ�ns jh; ni. The
atom always ends up in hwhile the field experiencesUK ¼
Us with Us ¼ 1� 2jsihsj. Such a photon-number depen-
dent Rabi pulse [12] was used with s ¼ 1 for a single-
photon quantum-nondemolition detection [13] and for a
controlled-NOT (CNOT) gate in CQED [14].

The free cavity dynamics is produced by the source S0,
resonantly coupled with C and acting during time intervals
�t between two Us operations. Being not resonant with
the atom in h, S0 leaves it unaffected. The free evolution
is described by the Hamiltonian H ¼ �iðE�a� EayÞ,
where E is the source amplitude and a (ay) the photon
annihilation (creation) operator. We use an interaction
representation eliminating the field phase rotation at cavity
frequency. The unitary Uð�tÞ is the displacement Dð�Þ ¼
expð�ay � ��aÞ, with � ¼ E�t=@ � 1. After p repeti-
tions ofUsUð�tÞ, the cavity state can be reconstructed [15].

The eigenvalues ofUs are�1 andþ1. The former corre-
sponds to the one-dimension eigenspaceH s, generated by

jsi (projector Ps). The latter is associated to the direct sum
of H<s (projector P<s), generated by the Fock states
j0i; . . . ; js� 1i, and H>s (projector P>s) generated by
Fock states above jsi. The projectors P� (� ¼ þ;�) are

thus P� ¼ Ps and Pþ ¼ P<s þ P>s.
Since H is a linear combination of a and ay, HZ reduces

to P<sHP<s þ P>sHP>s. Under the QZD, field states
restricted to H<s and H>s remain confined in these
subspaces, jsi realizing a hard ‘‘wall’’ between them.
This wall induces remarkable features in the evolution. If
we start from the vacuum in C with s ¼ 1, the system
remains inside H<1, i.e., in j0i. We recover the QZE [3].
We have simulated this QZD procedure [16]. Figure 2(a)

presents 10 snapshots of the field Wigner function, Wð�Þ,
separated by intervals of 5 steps, for s ¼ 6 and � ¼ 0:1.
The field starts from j0i 2 H<6. Its amplitude first in-
creases along the real axis (free dynamics). Between 15
and 20 steps, the amplitude reaches ’ 2 and QZD comes
into play. The coherent state ‘‘collides’’ on the Us-induced
‘‘wall,’’ materialized in phase space as an ‘‘exclusion

circle’’ (EC) of radius
ffiffiffi
6

p
(dashed line in Fig. 2). The field

amplitude stops growing and undergoes a progressive �
phase shift between steps 20 and 30. At step 25, the field is
in a ‘‘cat state,’’ quantum superposition of two components
with opposite phases. The fringing feature inside the EC is
the signature of the quantum coherence of this superposi-
tion. This cat contains only odd photon numbers (proba-
bilities for 5, 3, and 1 photons are 0.63, 0.31, and 0.03). At
step 35, the field state is nearly coherent with an amplitude
close to �2. It then resumes its motion from left to right
along the real axis, going through j0i again (around step
45) and heading towards its next ‘‘collision’’ with the EC.
Figure 3 presents the long-term evolution of the field

energy. During the first few hundred steps, the oscillations
reveal the quasiperiodic motion of the field inside the EC.
State distortions, however, accumulate and damp the os-
cillations, whose contrast nearly vanishes after 800 steps.
Since there is only a finite set of frequencies in P<6HP<6,

FIG. 2 (color). (a) QZD dynamics in H<6. Ten snapshots of the field Wigner function Wð�Þ obtained after a number of steps
indicated above each frame. The cavity is initially in its vacuum state, s ¼ 6 and � ¼ 0:1. The EC is plotted as a blue dashed line.
(b) QZD dynamics inH>6. Same as (a) with an initial � ¼ �5 amplitude. (c) Same as (b), with an initial amplitude � ¼ �4þ i

ffiffiffi
6

p
.

In (b) and (c) the successive frames correspond to the same step numbers as in (a).
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we observe at longer times a quantum revival [11]. The
energy oscillations resume and the field comes back to an
oscillating coherent state periodically colliding with the
EC as described above.

Figure 2(b) illustrates QZD in H>s with snapshots of
the field Wigner function for s ¼ 6 and an initial coherent
state j� ¼ �5i. The field collides on the EC after 20 steps.
It undergoes a QZD-induced � phase shift being, after 25
steps, in a cat state. After 30 steps, the state is again nearly
coherent with a positive amplitude. It resumes its motion
along the real axis. After 45 steps, its amplitude is slightly
larger than 4.5. It would be �0:5 in the case of free
dynamics. The QZD-induced phase inversion accelerates
the ‘‘propagation’’ in phase space. This opens interesting
possibilities when the initial amplitude is such that the field
state collides tangentially on the EC. The parts of the
Wigner function that come closest to the EC propagate
faster than others. The state is distorted and ends up
strongly squeezed [Fig. 2(c)].

QZD can be generalized to ECs centered at an arbitrary
point � in phase space by changing the kick operator UK

from Us to Usð�Þ ¼ Dð�ÞUsDð��Þ (these displacements
� being also performed by S0). After p steps, the
global evolution operator is UZðs; �; pÞ ¼ ½Usð�ÞDð�Þ�p
which can be expressed, using displacement operator
commutation relations, as UZðs; �; pÞ ¼ Dð�ÞUZðs; 0; pÞ
Dð��Þ exp½2ipImð���Þ�. Up to a topological phase, the
state after p steps is equivalently obtained by first displac-
ing the field by ��, performing p QZD steps in an EC
centered at origin and finally displacing back the field by �.

This leads to the concept of phase space tweezer.
Applying this procedure with s ¼ 1 to an initial cat state
j�i þ j�i (h�j�i � 0), we can selectively block the evo-
lution of j�i while leaving the other component free to
evolve. After N steps, we get the ‘‘stretched’’ cat j�i þ
DðN�Þj�i ¼ j�i þ exp½iNImð���Þ�j�þ N�i.

In an interesting variant, the position �p of the tweezer is

changed by a small amount at each stepp (j�pþ1��pj�1),

while � is set to zero (no free evolution). The sequence of

f�pg defines a trajectory T in phase space followed by the

center of the EC. A coherent state with the initial amplitude
�i ¼ �1 follows adiabatically this trajectory and becomes,
after the pth step, a coherent state with amplitude�p ¼ �p.

We realize in this way a tweezer which moves one selected
coherent state, while not affecting the evolution of all the
coherent states whose amplitude remains away from T .
A combination of tweezers can move all the components

of a superposition of nonoverlapping coherent states from
arbitrary initial to final positions. An obvious method is to
grasp them one by one, driving them from their initial to
their final position (taking care to move them so that
different components never overlap). The tweezers can
also be used in parallel by applying incremental motions
alternatively on each component.
Figure 4 illustrates this procedure for a two-component

cat, initially j�i þ j � �i with � ¼ 2. It is turned in 100
steps (50 on each component) into j�0i þ j � �0i with
�0 ¼ 5i. Panels (a) and (b) present the initial and final
Wigner functions. The final fidelity is 98.8% with respect
to the expected cat. It remains greater than 68% if the
operation is performed in 20 steps only, exhibiting the
robustness of this adiabatic procedure, which is promising
for experimental implementations.
The initial cat state can be generated in various ways

using dispersive [17] or resonant [18] atoms. An adapted
tweezer procedure also prepares from j0i mesoscopic
superpositions which are approximations of these cat states.

FIG. 3 (color online). Energy of the field as a function of the
number of steps for a QZD dynamics inside H<6. Conditions
are the same as for Fig. 2(a), which presents snapshots of the first
oscillation.

FIG. 4 (color). (a),(b) Initial and final Wigner functions Wð�Þ
for a phase space tweezer operation. The first step ECs are
depicted as solid lines in (a) and dotted lines in (b), the final
ECs as solid lines in (b). The arrows in (b) indicate the two EC
centers trajectories. (c) Cat created by a vacuum state crush
operation. Initial (dotted lines) and final (solid line) ECs are
plotted, with arrows indicating the motion of their centers.
(d) Four-component cat created by three successive crushing
operations.
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We ‘‘crush’’ the vacuum between two s ¼ 1 ECs whose
centers, initially at �2:5, move simultaneously towards
each other in 200 steps, until they reach the origin (the
wave function remaining outside both ECs). Figure 4(c)
presents the final Wigner function. The state is a superposi-
tion of two well-separated components (average energy 6.4
photons). Its fidelity with respect to a j�i þ j � �i cat with
the same average energy is 42%. The final components can
be crushed again and so on, leading to a superposition state
with an arbitrary number of components. Figure 4(c)
presents the Wigner function of a four-component cat ob-
tained by crushing again each of the two components in
Fig. 4(b) between ECs moving towards each other along the
imaginary axis direction.

QZD is also obtained when the interrogation pulse has a
Rabi angle � different from 2�. The pulse performs then a
unitary kick acting on the atom-cavity system, which
mixes jh; si with jþ; si and would create atom-field entan-
glement if C contained s photons. This unitary admits an
invariant subspace, belonging to the eigenvalue þ1
spanned by the projection jhihhj � ðP<s þ P>sÞ, the
same as for a 2� pulse. Starting from an atom in jhi and
a field inH<s orH>s, we obtain a QZD leaving the atom
in jhi and the field in its initial subspace. Under perfect
QZD, the cavity never contains s photons and the atom and
field are never entangled by the interrogation pulse.
Obviously, QZD is not achieved if � is very small, each
kick operation being too close to 1. We have checked
numerically that, for � ’ 1, we recover within a good
approximation all the results described above.

Numerical simulations can take into account realistic
experimental imperfections. We have simulated an experi-
ment in construction [Fig. 1(a)], with a cavity damping
time Tc ¼ 0:13 s and �=2� ¼ 50 kHz [15]. We have
taken into account the limited selectivity of the interrog-
ation pulse, which must be at the same time much shorter
than Tc and much longer than 1=�. We have optimized the
interrogation pulse parameters for a tweezer operation
leading, in 10 steps (2.3 ms total duration), from an
j� ¼ �2i þ j� ¼ 2i cat to j� ¼ �3i þ j� ¼ 3i. The
final fidelity with respect to the ideal cat is 70%.

Quantum Zeno dynamics applied to a field oscillator
leads to novel methods for tailoring nonclassical fields
and studying their decoherence [17]. Phase space tweezers
could be used to prepare from the vacuum j0i an arbitrary
superposition of nonoverlapping coherent states

P
icij�ii.

The procedure, described elsewhere [19], uses a sequence
of tweezing operations, each leading from j0i to one of the
j�ii’s. At each step i, the tweezer atom is prepared in a
superposition of h with an extra state f inactive in the
tweezing process. This step transforms j0i into a controlled

superposition of j0i and j�ii, leaving the j�ji’s (j < i)

invariant.
Experimental demonstrations are within reach of a mi-

crowave CQED setup. They could also be implemented in
circuit QED, where comparable �Tc values are realized
[20]. Manipulating at will the state of a quantum oscillator
in its phase space provides a new insight into the physics of
mesoscopic quantum superpositions and the exploration of
the quantum to classical boundary.
We acknowledge support by the EU and ERC (AQUTE

and DECLIC projects) and by the ANR (QUSCO-INCA).

[1] B. Misra and E. C. G. Sudarshan, J. Math. Phys. (N.Y.) 18,
756 (1977); H. Nakazato et al., Int. J. Mod. Phys. B 10,
247 (1996); Phys. Lett. A 217, 203 (1996); D. Home and
M.A. B. Whitaker, Ann. Phys. (N.Y.) 258, 237 (1997); K.
Koshino and A. Shimizu, Phys. Rep. 412, 191 (2005).

[2] W.M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J.
Wineland, Phys. Rev. A 41, 2295 (1990); B. Nagels,
L. J. F. Hermans and P. L. Chapovsky, Phys. Rev. Lett.
79, 3097 (1997); P. G. Kwiat et al., Phys. Rev. Lett. 83,
4725 (1999); C. Balzer, R. Huesmann, W. Neuhauser, and
P. Toschek, Opt. Commun. 180, 115 (2000); E.W. Streed
et al., Phys. Rev. Lett. 97, 260402 (2006); O. Hosten et al.,
Nature (London) 439, 949 (2006).

[3] J. Bernu et al., Phys. Rev. Lett. 101, 180402 (2008).
[4] P. Facchi and S. Pascazio, Phys. Rev. Lett. 89, 080401

(2002); J. Phys. A 41, 493001 (2008).
[5] P. Facchi, D.A. Lidar, and S. Pascazio, Phys. Rev. A 69,

032314 (2004).
[6] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).
[7] W.A. Anderson and F. A. Nelson, J. Chem. Phys. 39, 183

(1963); R. R. Ernst, J. Chem. Phys. 45, 3845 (1966); R.
Freeman, S. P. Kempsell, and M.H. Levitt, J. Magn.
Reson. 35, 447 (1979); M.H. Levitt, R. Freeman, and
T.A. Frenkiel, J. Magn. Reson. 47, 328 (1982).

[8] H. Nakazato, M. Unoki, and K. Yuasa, Phys. Rev. A 70,
012303 (2004).

[9] X. Q. Shao et al., J. Opt. Soc. Am. 26, 2440 (2009).
[10] R. Rossi, K.M. Fonseca Romero and M.C. Nemes, Phys.

Lett. A 374, 158 (2009).
[11] S. Haroche and J.M. Raimond, Exploring the Quantum

(Oxford University Press, Oxford, 2006).
[12] M. França Santos, E. Solano, and R. L. de Matos Filho,

Phys. Rev. Lett. 87, 093601 (2001).
[13] G. Nogues et al., Nature (London) 400, 239 (1999).
[14] A. Rauschenbeutel et al., Phys. Rev. Lett. 83, 5166 (1999).
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