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We exactly diagonalize the finite-size XY model with periodic boundary conditions and analytically deter-
mine the ground-state energy. We show that there are two types of Bogoliubov fermions, singles and pairs,
whose dispersion relations have a completely arbitrary gauge-dependent sign. It follows that the ground state
can be determined by a competition between the vacuum states (with a suitable gauge) of two parity sectors.
We finally exhibit some points in finite-size systems that forerun criticality. They are associated to single
Bogoliubov fermions and to the level crossings between physical and unphysical states. In the thermodynamic
limit, they approach the ground state and build up singularities at logarithmic rates.

DOI: 10.1103/PhysRevA.80.032102

I. INTRODUCTION

The analysis of one-dimensional spin chains is a useful
approach to the modeling of quantum computers [1]. This
class of systems has been thoroughly investigated in the ther-
modynamic limit [2-4]; however, experimental and theoret-
ical difficulties impose strong bounds on the realization of
large scale systems and this has boosted a high interest in
finite-size systems [5-8]. The investigation of the last few
years has focused on entanglement [9,10] in diverse finite-
size models by means of direct diagonalization [11-18].
These studies were boosted by the recent discovery that en-
tanglement can detect the presence of quantum phase transi-
tions [19-25].

In this paper, we exactly diagonalize the XY model with
periodic boundary conditions, describing a one-dimensional
chain of spins with nearest-neighbor coupling, in a constant
and uniform magnetic field. The XY model is a class of
Hamiltonians distinguished by a different value of the aniso-
tropy coefficient, which introduces a different coupling be-
tween the x and the y components of the spins (in particular,
the isotropic case, corresponding to the case in which the
anisotropy coefficient vanishes, is known as XX model).

Our aim is to perform a theoretical investigation and pro-
pose a strategy to look at the diagonalization of the XY spin
model. As for infinite chains [4], the diagonalization proce-
dure is divided in three steps: the Jordan-Wigner transforma-
tion, a deformed Fourier transform (generalizing the discrete
Fourier transform), and a gauge-dependent Bogoliubov
transformation. After the Jordan-Wigner transformation, the
Hamiltonian, expressed as a quadratic form of annihilation
and creation operators of spinless fermions, is characterized
by the presence of a boundary term [2] whose contribution,
which scales like O(1/N), cannot be neglected for finite-size
systems. However, this boundary term vanishes in Fourier
space if the discrete Fourier transform is deformed with a
local gauge coefficient, depending on the parity of the spins
antiparallel to the magnetic field. This technique was intro-
duced in [26]; however, we will follow a different approach
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that can be easily generalized to different boundary condi-
tions and show that the deformation of the discrete Fourier
transform comes out quite naturally as the result of a modu-
lar equation on its phases. After the Fourier transform, there
emerge two classes of fermions, paired and single ones
[4,26]. In particular, in the XX model there are only single
fermions. The last step of the diagonalization procedure is
the unitary Bogoliubov transformation given by a continuous
rotation for fermion pairs and by a discrete one for single
fermions.

In this paper, we exploit the simple fact that the Bogoliu-
bov unitary transformation is gauge dependent, since it is
given by two possible continuous rotations for fermion pairs
and by either the identity or the charge-conjugation operator
for single fermions. As a consequence, the sign of the dis-
persion relation is completely arbitrary, apart from the con-
straint that fermions belonging to the same pair have the
same sign.

It seems that this feature, quite surprisingly, has been ne-
glected in the large literature on finite-size spin models. Of
course, by its very definition, a gauge freedom does not
change the physical results. However, it paves the way to a
deeper comprehension of physical phenomena.

From the gauge freedom of the Bogoliubov transforma-
tion, it follows that a possible expression for the diagonal-
ized Hamiltonian is such that for successive intervals of the
magnetic field, the vacuum energies of the two parity sectors
alternatively coincide with the ground state and the first-
excited level. We will exhibit this mechanism of “competi-
tion” between vacua.

Finally, we also present a way of looking at quantum
phase transitions for this class of one-dimensional spin mod-
els. We will show that finite-size systems exhibit the “fore-
runners” of the points of quantum phase transition of the
thermodynamic systems. They are associated to single Bogo-
liubov fermions and arise at the level crossings between
physical and unphysical states. In fact, at the values of the
magnetic field corresponding to the forerunners, the second
derivative of the ground-state energy scales as —log N, build-
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ing up a singularity in the thermodynamical limit N — .
Since in the XX model all Bogoliubov fermions are single,
one reobtains the well-known result that in the thermody-
namic limit, the anisotropic case presents two discrete quan-
tum phase transitions whereas the isotropic or XX model is
characterized by a continuous one.

II. XY HAMILTONIAN

We consider N spins on a circle with nearest-neighbor
interaction in the xy plane and with a constant and uniform
magnetic field along the z axis. The Hilbert space is H=
®iEZNf),~, where ;= (2 is the Hilbert space of a single spin
and Zy, labeling the positions on the circle, is the ring of
integers mod N with the standard modular addition and mul-
tiplication. The XY Hamiltonian is given by

1 1-
H.(g) =—J 2 [gOf+ (%,)a‘foﬁl + (T’y>‘7}v0‘iv+1}’

iely
(1)
with

d=1gle - 0de ol le{xy.z},

()

where o acts on the ith spin and may be represented by the
Pauli matrices. />0 is a constant with dimensions of energy
and g € R and y [0, 1] are two dimensionless parameters. g
is the magnetic field and 7y the degree of anisotropy in the xy
plane, varying from 0 (XX or isotropic model) to 1 (Ising
model). As is well known, in the thermodynamic limit, the
diagonalization of the XY Hamiltonian is achieved by means
of three transformations: the Jordan-Wigner (JW), Fourier,
and Bogoliubov (BGV) transformations. We will first ana-
lyze in detail how the topology of the circle will induce a
deformation on these transformations in finite-size chains.

iEZN,

A. Jordan-Wigner and deformed Fourier transformations

In this section, we set up the notation and recall some
known results that we will need in the following. First of all,
we will see that after applying the Jordan-Wigner transfor-
mation to the Hamiltonian, it will appear a boundary term
proportional to the parity operator of the number of spins
down in the system [2]. Fortunately, this operator commutes
with the Hamiltonian and therefore one can separately diag-
onalize its projections on the eigenspace of even and odd
parities [4,26,27]. The diagonalization procedure is given by
a discrete Fourier transform; however, in case of finite-size
systems, one has to take into account the presence of the
boundary term and in order to get rid of it, one has to deform
the standard Fourier transform by means of a local gauge
phase [4,26]. We will obtain the above correct phase defor-
mation by solving a modular equation based on the transla-
tional invariance of the model. This approach has the advan-
tage of being suitable to generalizations to different
boundary conditions.

The Jordan-Wigner transformation is based on the obser-
vation that there exists a unitary mapping

PHYSICAL REVIEW A 80, 032102 (2009)

U(CHEN — F_(CN) (3)

between the Hilbert space of a system of N spins H
=((2)®N and the fermion Fock space F_(CM) of spinless
fermions on N sites. Here,

Fi9)=0.0 5" @
where $"=$9®" for n=1, $°=C, and Q_ is the projection
onto the subspace of antisymmetric wave functions [28]. In
order to simplify the notation, in the following we will use
the above isomorphism and will identify the two spaces H
= F_(CN) without making any longer mention to . By vir-
tue of this identification, we can consider the canonical an-
nihilation JW fermion operators [29]

c,»=< I1 0‘;)0,»—=e""”fl0i_, V iely, (5)
JeLy,j<i

where o7 =(0}—-i0})/2 and n;| is the operator counting the
number of holes (or spins down) to the left of i

n; = > (l—c;cj). (6)

jelyj<i

Note that the above definitions rely upon the following
(arbitrary) ordering of Zy: [0]<[1]<---<[N-1], where
[k]=k+NZ. In particular, if the choice of the successive ele-
ments can be considered natural and is well adapted to the
Hamiltonian (1), the choice of the first element [0] is totally
arbitrary and is related to the choice of a privileged point of
the circle.

The JW operators anticommute both on site and on dif-
ferent sites whereas the Pauli operators anticommute only on
the same site. From Eq. (5), one sees that the term in the
Hamiltonian describing the coupling between spins [0] and
[N-1]=[-1], when written in terms of the JW operators, is
characterized by an operator phase at variance with the other
coupling terms. This introduces some difficulties in the di-
agonalization of the Hamiltonian because its expression writ-
ten in terms of the fermionic operators is characterized by the
presence of a boundary term

H,(g)= —J{ ~Ez [g(1- 2cjc;) + cjc;+1 + chC}L +¥(cici
JELN

+ e = @™+ Doy + o)

+ Aeoneio+ cﬁ;)]ce'_lm}, ™)
where the number operator,
n= 2 (I-cfc, (8)
jely

counts the total number of spins down in the chain. In the
thermodynamic limit, the boundary term can be neglected
since it introduces corrections of order 1/N; the problem is
then reduced to the diagonalization of the so-called “c-
cyclic” Hamiltonian [2] and can be easily achieved by means
of a discrete Fourier transform.

Since we are interested in finite-size systems, with finite
N, the boundary term cannot be neglected [4,26]. The main
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difficulty introduced by the boundary term in the Hamil-
tonian (7) is that it breaks the periodicity of the JW operators
due to the arbitrary dependence of the phase /™! on the
ordering of the spins on the circle. However, Eq. (7) can be
simplified by noting that the parity of the number of spins
down,

PZ eim’l, (9)

is conserved, [P,Hy]=0, although not so the spin-down
number operator n| itself. Its spectral decomposition is

P= D oPy=P,-P_. (10)
e==*1
Therefore, the Hamiltonian can be decomposed as [27]
H,=P.H /P, +P HP =H +H (11)

and the analysis can be separately performed in each parity
sector, where P acts as a superselection charge.

In each sector, the XY Hamiltonian can be diagonalized
by deforming the discrete Fourier transform by means of a
local gauge «a;,

1 21 . .
¢;= \TT] > exp(T(k]# aj))ck, jely. (12)
VN keZy

This deformation preserves the anticommutation relations of
¢ and cAZ in the Fourier space. The local gauge can be deter-
mined by imposing that the Fourier transforms of all terms in
the sum of Eq. (7) have the same form. One gets, V j € 7y,

i
exp[%(%‘ - aj+1):| =explim(n) +1)]

y 2771'[ 1
exp) —|la_;1— « .
p N AT Ao
(13)
Therefore, the left-hand side, like the right-hand side, must

not depend on j,

aj+

l—aj=a,

with « solution to the equation

exp(2mia) =explim(n, +1)], (15)
and the phase «; associated to the first site completely free.
The solutions in the two parity sectors are
0(mod N) if @=-1(njodd)

1
te (mod N) =41 )
4 E(mod N) if @ =+ 1(neven).

R
i

(16)
In conclusion, by substituting the (sector-dependent) de-
formed Fourier transform

e(ZWi/N)aO

2171
cj=—F7— > exp(—J(k+ a))ék, jely (17)
VN kely N

into Eq. (7), we obtain
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. +k
H(yg)(g)=‘1 > {g+26k6}({cos<2waN )—g]

kely
a+k .
+iy sin<277—)(e4”’“0wé;ék
N
—4aiag/N AT A
4 o~4miag ckclt)}PQ, (18)

where V k e Zy,

k=-2a-k+NZ. (19)

A comment is now in order. Note that, alternatively, one
could have deformed, instead of the Fourier transform, the
JW transformation in the following way:

c;=¢€

; iwnjie_ZWi/N(ia+a0)g;’

and would have obtained the same results.

B. Bogoliubov transformation: Gauge freedom

This section deals with the last step of the diagonalization
procedure given by the Bogoliubov transformation. For
finite-size systems, one finds that there are two classes of
fermions, characterized by a different kind of Bogoliubov
transformation [26,30]. Here we show that the Bogoliubov
transformation has a gauge freedom, a simple fact that to our
knowledge has been unrecognized in the literature.

Consider the Hamiltonian (18). When y>0, the last term

couples fermions with momenta k and k. In fact, there are
two types of fermions: the single and the coupled ones (fer-
mion pairs). Their momenta k belong to the two sets

1+
Q+NZ},
2

(21)

Sp=1{k e ZN|k=1€}={k € Zy2k=—-

CQZZN\SQ, (22)

respectively. Note that the mapping k> k is an involution of
Zy, i.e., k=k. Therefore it can be viewed as an action of the
group 7, on the space Zy. From this perspective, S, and C,
are nothing but the sets of points belonging to one-element
and two-element orbits of the above action, respectively. The
terms in the Hamiltonian involving pairs (k,I;) of fermions,
in fact, depend only on the orbit. The XY Hamiltonian can be
written accordingly as

H(ye)(g) = 2]{ > |:cos<27ra—;k) - g} (51T<5k— é)

keS,

1 _
+5 > Czhy(k)ck}Pg, (23)
keCQ

where C=(e72m0N¢! o2ma/Ner) and h.(k) is a Hermitian
operator on (2 given by
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h.(k) =— ysi (277 ) Y+ (277 )— foad
ST )
y sin N o cos N g

(24)

The factor 1/2 in front of the pair terms in Eq. (23) derives
from the identity C]T;hy(lg)C;=C,th7(k)Ck that expresses the
fact that the various terms depend only on the orbit they
belong to.

Let us first focus on fermion pairs. For each k € C,, h,, can
be thought as a vector in the yz plane of the internal space of
the pair and is diagonalized by a unitary rotation along x up
to the z direction,

R (6Qh (KR (6,)" = ho*, (25)
with 4 e R and Rx(b’k)zexp(—i%a"). One obtains

2m(a+k) 2m(a+k)

—g}sin 6,=0.

(26)

v sin cos G, + {cos

Note that for each pair (k,E), there are two possible solutions
that differ by mr,

0= +sm,  O=-6+sm sef{0.1}, (27
where
( a+k>
ysin| 27—
N T T
6, = arctan € (——,— . (28)
( a+k> 22
g—cos| 2m——
and

- 2 +k . .
h= {cos% - g}cos 6i(1 +tan” 6}). (29)
The unitary transformation R, (6}) apphed to C defines a
new vector of fermion operators B —(bT,bk) CTR (),
for ke C, and s € {0, 1}, where B is related to Bky | by the
relation

Bk,l =Rx(7T)Bk,O’ ke CQ (30)
(see Fig. 1). The fermion operators b, and bj are the Bogo-
liubov operators and R, is the Bogoliubov transformation for
fermion pairs. By noting that cos 6;=(-1)*(1+tan? 6})~"2,
for each pair of momenta one gets

H' = Clh(k)C, = (- 17e{2()B] "By

kecC, se{0,1}, (31)

where 8,&9) is the dispersion relation for fermion pairs

PHYSICAL REVIEW A 80, 032102 (2009)

A

By 1

FIG. 1. (Color online) Bogoliubov rotation for fermion pairs.

2m(a+k
o]

2
X\/lcoszw<a+k)— } 492 sin? 27T(§+k)

N

(32)

Here, sgn x=x/|x| for x#0 and sgn 0=0. Note that the
choice between the two possible angles 6, affects the Bogo-
liubov vectors B, ; by exchanging particles with antiparticles,
while the corresponding dispersion relation is affected by a
sign (=1)°*. We stress that for each k € C,, the Bogoliubov
rotation is defined independently of the other pairs and so the
sign of the dispersion relation can be chosen in a completely
arbitrary way, pair by pair. It is not difficult to show that the
unitary operator on the Fock space F_(C), corresponding to
a Bogoliubov rotation R, (6), reads

0 At AT | ala
U (6) =exp| - lEKk . Ki=E6+ Gy, ke Cy.
(33)
Its action on the Hamiltonian is
f s At Af
U O)HEQUL) = (- 1)'ef@(clec—cic)  (34)

for k € C,. Observe that since K is quadratic with respect of
creation and annihilation operators, it commutes with the
parity operator (9),

P=U(O)PUL6). ke C,, (35)

and this means that the Bogoliubov transformation for fer-
mion pairs preserves the parity sector. Finally, according to
(30), one gets the relation
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U(6) = VigU(8h),  with Vig=U(m), ke C,.
(36)

Note that the unitary operator V;j can be decomposed in the
form

Vi = Sk CiCrs (37)

where C; and S;j are, respectively, the charge-conjugation
operator, Ckc”kC,f=cA,t, and the swapping operator Sk,;ékS;d:
=—i¢}, given by

C,= exp(ig(ék+ e,b), (38)

Skk=exp(ig(é,ték+ 5;0})), keC,. (39)

Consider now the case of single fermions, k € SQ. The set
S, depends both on the parity sector and on the parity of N.
For N even one gets

r{[o] PH if o=—1
se={ UL 2 ] et (40)
{[0]} if e=+1,
while for N odd,
fi) if o=—1
So= {NT_l} if p=+1. “1)

It is convenient to look at single fermions as a degenerate
case of Bogoliubov pairs. Indeed, Eq. (28) reduces to

tan 6, =0, ke S,, (42)

whose solutions are given by @, =sr, with s € {0, 1}. There-
fore, in this case we are free to choose between two possible
unitary transformations: the identity and the charge conjuga-
tion,

Uk: (Ck)oz 1 or Ukz Ck» k e SQ. (43)

Note that an important consequence of this gauge freedom is
that the parity is not always preserved: if charge conjugation
is chosen, two parity sectors are swapped by the Bogoliubov
transformation

P=-C,PCj. (44)
Finally, note that for single fermions, the dispersion relation
(32) reduces to
+k
sig)(g) = cos(ZWaT> -8 ke&,, (45)

since sin[27(a+k)/N]=0, when k € S,,.
In conclusion, the total Bogoliubov transformation that
diagonalizes the Hamiltonian (23) has the form

Us(g.v:0.9)= [ U8V I (€))%, (46)
keCylZy jeSe

where
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s=(sp) € {0,1}Y, with s,=sp, (47)
and the restriction of the product to C,/Z, implies that, in the
case of coupled fermions, one must consider only one ele-
ment for each pair (orbit of 7,). Due to the constraint in Eq.
(47), we infer that the Bogoliubov unitary transformation has
a gauge freedom represented by the arbitrary choice of a
binary vector of length [S,|+|C,|/2.

Note that the anticommutation relations are preserved by
the Bogoliubov transformation, while the parity sectors are
swapped according to

P=(-D)lleUy(g, y;0,5)PUs(g, y;0.5)f,  (48)
where
Islo=lss,l= 2 se. (49)
kESe

Therefore, one obtains the final expression of the diagonal-
ized Hamiltonian

H?(g) = Uplg. v:0.9)HP(g)Up(g. v:0.)"

=272 (- 1)%2%)(62@— %)Pe, (50)

kely

where _=(—1)|S|QQ, which depends on an arbitrary vector §
e {0, 1}15*ICel2 that generates s by the relation s;,=s7=5,.
Note that the physical part of Fl(f) acts on the sector of parity
0.

C. XY ground state: Vacua competition

One can use the gauge freedom of the Bogoliubov trans-
formation (46) in the following convenient way. Let s=s(g)
be a function of the intensity of the magnetic field g such that
(—l)Sk(g)s]((e)(g)ZO for every geR. From Eq. (32), this
means that

2 +k
(- 1)) = sgn{cosM - g} , (51)
N
that is
1 1 2 +k
sk(g)zz— Esgn{cos%—g] (52)

Note that since si(g)=s:(g), the above solution is consistent
with the constraint (47) of s. Therefore, the diagonalized
expression of the XY Hamiltonian reads

o
H9(g)=27 2 ISEQ)(g)I<5Lck—§)Pe<g>’ (53)

kely

where 9(g)=(~1)*®leo. With this choice, in each parity sec-
tor, the lowest energy state is the one with zero fermions
(vacuum state) whose energy density/J is given by
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Eiflg:—l > {{g—cos(ﬂc+w-r>]2

N N 4N

+ 9 sinz(— + (54)

27k (1+Q)7T) 12
N 4N ’

with o= = 1. Note, however, that a condition must be satis-
fied: the Bogoliubov vacuum state is a physical state, pro-
vided it has the right parity 0(g). Were this is not the case,
the projection Pg(,) would automatically rule it out.

Let us look at the function 0(g) more closely. For N even,
we have from Egs. (40) and (52)

|S(g)|g = [S[o](g) + S[Nxz](g)]5g,—1
1 1
= {1 + Esgn(l -g) - Esgn(l +g)] Op-1- (55)

where

2
For N odd, we have from Egs. (41) and (52)

o(g) = sgn(l - Qg2> (N even). (56)

|S(g)|g = S[O](g) 5@,_1 + S[N—1/2](g) 5g,+1

11 1
3" Esgn(l —8)81+ Esgn(l +8)8p41, (57)

where

0(g)=—sgn(l+0g) (N odd). (58)

Since the vacuum state has N holes, its parity is (=1)" and it
is a physical state only if

o(g)=(-D" (59)

Equation (59) is satisfied for arbitrary @ when g e (-1,1),
while it is true only for o=(-1)" for g<-1 and p=+1 for
g>1. Therefore, for g e (—1,1), in the various regions of
magnetic field g, the ground state is alternatively given by
one of the two vacua with energy (54). We call this mecha-
nism vacua competition between the two parity sectors (see
Fig. 2).

For g<-1, the vacuum state with ¢=-1 for N even (@
=+1 for N odd) is not physical because it has the wrong
parity 0=0=—(-1)" and it is ruled out by the projection Pj.
Analogously, for g>1 the vacuum state with ¢=—1 for both
N even and odd is ruled out. However, it is not difficult to
prove that the energy of the unphysical vacuum when |g|
>1 is always larger than the physical one. Therefore, as far
as one is interested in the ground state, the ground state is the
result of the vacua competition in the whole range g € R. Not
so for the first-excited level, which is the energy of the “los-
ing” vacuum only in the range (-1, 1), while outside it is the
lowest one-fermion energy level above the losing vacuum.

More generally, from Egs. (56) and (58), it easily follows
that the whole spectrum is given for g € (-1, 1) by the union
of the spectra of eigenstates with an even number of Bogo-

liubov fermions [@=(-1)"] of both Hamiltonians ﬁ(yg), with
¢=*1. On the other hand, outside the above interval,
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N =4

E

~ 1.4
(@)
N =5
E
-1.0 -0.5 05 10
-0.6 9

—14t

(b)

FIG. 2. (Color online) Vacua competition for N=4 and 5 spins:
in both cases, the dashed line corresponds to E(V;)C and the solid one
to E)

vac®

the spectrum is given by the eigenstates of ITIEYQ)(ITI(Y_Q))
with an even (odd) number of Bogoliubov particles, where
o=(-1)" for g<-1 and @=+1 for g>1. The intersection
points between the vacua energy densities depend in general
on the number of spins N; however, independently of N, the
difference between the two energy densities,

. . 1 mm 2
it -r-ri=- 5 S |- ™))
meZyy
172
+ '2<—Wm) : 60
y251n N (60)

—_—

always vanishes at g= * 1 -2 (see Fig. 3). Indeed one has

O R A e el |

EIMT(+ |
keZon

(61)

and
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EGt
0.08+
/ N =4
1—72
‘ \%SEZZSQ;
0.5 1.0 15 ¢

—VI=72

FIG. 3. (Color online) Difference between energy densities (1n
unit J) of the two vacua at y:% for N=4,5,6. For all N, ESI
vanishes at g=1—-7.

mm 1- ei27T(N+])
2 (- 1)'”008(7) = Re(w) =0. (62)
kelyy

From Fig. 3, one can also observe that for finite-size systems,
the vacua intersection points present discontinuities of the
first derivative, as will be explicitly shown in Sec. IV. In that
section, we will also focus on the points g= = 1, which are
two interesting values of the magnetic field for this class of
Hamiltonians, since they will be shown to represent the
finite-size forerunners of the quantum phase-transition points
(in the thermodynamic limit). Finally, it is worth mentioning
that an analogous description in terms of vacuum states be-
longing to different parity sectors can be found already in
numerical investigations (see, for example, [31]). In fact, in
these works, one is interested in the diagonalization of the
chain Hamiltonian and is faced with the problem of resolving
a phase ambiguity, which is nothing but the Bogoliubov
gauge introduced here. For this reason, our results can be of
interest also for numerical applications.

III. XX MODEL

In this section, we look at a particular case of the XY
model: the XX model (y=0) known as the isotropic model.
In fact, as recently shown [32], the symmetry of this model
enables one to reconstruct the spectrum of the system and in
particular the expression of the ground state by following a
direct approach. Thus, we will use it as a benchmark for the
method here proposed.

Since y=0, the interaction between nearest-neighbors
spins along x and y axis is characterized by the same coeffi-
cient in the Hamiltonian (1),

Of i+1+ O..lya,ly+1:|

N | —
N | —

Hyy(g) =H,(g)=—J > [go’f +

iely
(63)
Equation (18) then reduces to

+k 1
H59>(g)=212 [cos(ZTraN >_gj|(ék6/t_5>ng

kely
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(64)

a=
4

From this follows that the Fourier-transformed XX Hamil-
tonian is already diagonal and the last term characterizing
coupled fermions in Eq. (18) vanishes for all k. In other
words, in the XX model, we are only dealing with single
fermions, S,=7Zy, and the Bogoliubov transformation (46)
reduces to

Us(g:e.8)= 1 . (65)
kely
where now s € {0,1}" is an unconstrained binary string of
length N. This yields

HP(9) = Up(g:0.5)HY () Up(g:0.5)"

=27 > (- l)s{cos<2ﬂ'a7+k) —g}

kely
1
x(eke,i - 5)1)@, (66)

with 9=(-1)¥lo. In particular, if s,=0, the Bogoliubov trans-
formation associates JW fermions to Bogoliubov fermions,
while if s;=1, it transforms JW fermions into Bogoliubov
antifermions or holes.

Energy spectrum

As already emphasized at the end of Sec. II B, the energy
spectrum does not depend on the choice of the gauge s of the
unitary Bogoliubov transformation. If =0, Eq. (66) becomes

~ +k ' 1
HY=H® =27 |:COS<27TaT) - g:| (CA}(CA,(— E)PQ.

kely
(67)

The spectrum of the above Hamiltonian, and in particular its
ground-state energy, has been studied in [32]. We quickly
summarize the main results and show how they derive from
vacua competition.

One can show that the general expression of the lowest
energy levels in the different n-particle sectors does not de-
pend on the parity of N. For n fermions, one gets

gsin(nﬂ'/N)
N sin(m@/N)

2n

EM™(g) =g<1 - —)

I (68)

In Fig. 4, we plot the lowest energy levels corresponding to
0=n=N for N=8 sites. The intersections of levels corre-
sponding to n and n+1 fermions (starting from n=0) define
the points of level crossing g., where an excited level and the
ground state are interchanged. The analytic expression of the
critical points is easily obtained by the condition E,"(g.)
=E""(g.). We find

n+l
sin(nm/N) — sin[(n + 1)7/N]
sin(7/N)

g.(n)= , (69)

for 0=n=N-1. As a consequence, the ground-state energy
density is
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N =38
n=N Emin n=>0
n=7=N-1 [ n=1
0.5}
n==~0 I n=2
A ‘ g
-1.0 =0.5 0.5 1.0
n=>5 n=23
n=4 _'j n=4
%_m \

FIG. 4. (Color online) Lowest energy levels E™"(g) for different
number of fermions n; the intersections between the energy levels
corresponding to n and n+1 fermions (starting from n=0) are the
points of level crossing (dots).

2 2 si /N

E.(g)=g|l1-=— ,
(&) g( N/ N sin(a/N)

with ge(g.(n—1),g.(n)) and where we stipulated that
gc(_1)=_oo and gc(N)=+OO- Thus? for g€ (gc(n_l)’gc(n))a
the ground state contains n JW fermions. Note that g.(0)
=-1 and g.(N-1)=+1, independently of N.

We will now derive the ground-state energy density start-
ing from the same choice of the Bogoliubov transform made
for the XY model (53) that particularizes to

a+k a1
cos 27T—N -g ckck—z Pé(g),

(71)

aP(g)=27 2
kEZN

with @(g)=(~1)¥®lp. The ground state is then the winner of

the vacua competition between Ef,;l and E(VZZ, where

1
EQ@=-% 2

NG N 4N

cos(@ + M) —g‘ (72)

(see Fig. 5). The points of level crossing (69) are given by
those values of the magnetic field that satisfy the following

equation:
cos| — | -
N/ 78

Consider the regular polygon inscribed in a circle of unit
radius in Fig. 6. It is a geometrical representation of the
function cos(%k) for k € Zy. When |g|> 1, one immediately
gets E%M(¢)=0, whereas for |g|=<1, the key idea is to con-
sider the N intervals on the x axis limited by the dashed
vertical lines, represented in Fig. 6. For each interval one can
write the explicit expression for the vacua difference (73).

For example, when g € [cos(y), 1], one gets

=0. (73)

o 1
Eude) ==+ > (-1

keZyy
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E

=08

FIG. 5. (Color online) The ground-state energy density of the
XX model (N=8) is given by the competition between the vacua
energy densities E) (dashed line) and E'*). (solid line).

vac vac

a1 ) [ ) (r_kﬂ
Epi(g)= N{(l g)+kezm%¢[o]( D] g —cos|

=209, (74)

from which follows that in this interval E%(g)=0 for g=1.

Similarly when g e [cosgm—jvlw ,co8” 7], for 0O=m=N-1, one
gets that E4(g)=0 when

vac

k=1

g=(- l)m[1+zzcos<%k>]=—gc(m), 0=m=N-1,

(75)

where g.(m) are the points of level crossing (69) [for n=0,
one gets g=1, in agreement with Eq. (73)]. By virtue of the
symmetry g.(n)=—g.(N—1-n), one immediately sees that
the level crossing points have the same analytic expression
of the intersection points between the two vacua for n=N
—-1-m.

[ —

-1

FIG. 6. (Color online) Geometrical representation of Eq. (73)
when N=8; the thick red line is the magnetic field g.
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N=9

1

-1

FIG. 7. (Color online) Geometrical description for cos(m:,ikl)
for N=9: the two polygons belong to the parity sectors «
=0(mod N) (dashed line) and a@=1/2(mod N) (solid line)

IV. THERMODYNAMIC LIMIT AND QUANTUM
PHASE TRANSITIONS

In this final section, we exhibit an unexpected link with
quantum phase transitions: the combination of the Bogoliu-

PHYSICAL REVIEW A 80, 032102 (2009)

bov gauge with the conservation of parity sectors uniquely
determines the points where quantum phase transition will
occur when the size of the system becomes infinite. These
points correspond to single Bogoliubov fermions. In fact,
while the gauge of Bogoliubov pairs does not affect parity,
the gauge of single fermions does change it. Thus, it couples
physical states with unphysical ones (with wrong parity). It
is just at the level crossings of these states that quantum
phase transitions will occur. Because of the different symme-
tries between the isotropic and the anisotropic cases, we will
separately consider these two cases.

A. Quantum phase transitions in the XY model

In the anisotropic case, the forerunners of the points of
quantum phase transition are characterized by the presence
of large values of the second derivative of the ground-state
energy density that is then amplified and gives rise to a sin-
gularity in the thermodynamic limit. As observed in Sec.
II C, the first derivative of the ground-state energy evaluated
at the intersection points between the two vacua is not con-
tinuous and for finite-size systems, the second derivatives
diverge at these points; however we will show that these
singularities vanish when N — cc. Consider, for example, the
level crossing at g=v1-197. The difference between the first
derivatives of the two vacuum energies is given by the de-
rivative of Eq. (60)

1 1

R 5
dg N\"l—)’zkeZN 1-

When the number of spins N is odd, for each k € Zy, there is a given k=k+% > such that cos(

the last equation becomes

d Edlff '}/2

2wk ) 2k
1—vy cos| — + — 1-+V1-9 cos
Vi-v (N ) Vi-y (N)

201 -

VdC V1 '}’2)__

dg -y 7

From the symmetries of the function cos(z—;k), one gets that
the last expression is strictly greater than zero. From this, it
follows that the second derivative of the vacua energy differ-
ence diverges for all finite N at g=v“m and the same
argument can be extended to all intersection points between
the two vacua. The case of even N is analogous, as one can
see by noting that the polygon corresponding to «
= %(mod N) is rotated by an angle y (or in other words, it
associates to each momentum k'—>I€:k+]%

Summarizing, for finite-size systems, the second deriva-
tive of the energy density of the ground state diverges at the

(76)
N

by=—co (27Tk +7) (see Fig. 7) and

(N-1)/2

+4 E
k=1

2wk
)7

1 —cos(%)(l - )

(77)

intersection points of the two vacua. On the other hand, in
the thermodynamic limit, this divergence is suppressed. In-
deed, in the N— oo limit, Eq. (76) becomes

d Edlff ,},2 J27T
VdC 1 _ Y d ) |
dg -7 2m1 =), x[f(x) = fQx + 7/N)]

(78)

where f(x)=1/(1-\1-197 cos x). Expanding in Taylor series

f(x+m/N), one gets

032102-9



ANTONELLA DE PASQUALE AND PAOLO FACCHI

e ([T — L (0)=0, N (79
dg X 77\'1—)/2 - .

This means that the singularities of the second derivative of
the ground state vanish in the thermodynamic limit; in other
words, the forerunners of the quantum phase transition are

(1) N even, Q:_17 SQ:{[O]’[%]]}a

N

1 2k 2 2k 172
E(V;)Cz——(E {{g—cos(iﬂ +)/zsin2<i>} +lg-1]+|g+1]).
keCQ N N

(2) N odd, @=-1, S,={[0]},

(3) N even, o=+1, S,=92,

))

1
s=-

(4) N odd, o=+1, S,={[*5"1},

E(+) _

vac —
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not related to the finite-size level crossings of the ground
state. In this section, we will show that they are related to the
level crossings between the unphysical vacuum and the los-
ing physical vacuum where single Bogoliubov fermions sit.

Consider the explicit expressions of the vacua energies
corresponding to the four possible cases given by the parity
of N and the two parity sectors:

(80)

Eve=- J%I(kezcg { [g_cos<%€>r+ v Sinz(z_:()}anf s - 1|)- (81)
kezNﬂg_“’S(%%)]Zfsw(%*%)}m)' (82)
)]Zﬁm{%ﬁ)}qwu). 33)

1 2k
—_ 2 |:g—COS<l+Z
N, N N

Observe that the absolute values in the previous expressions
correspond to the cosines evaluated at single fermion mo-
menta S,. At these values of the magnetic field, the first
derivative of energy is not continuous (see Fig. 2) and the
second derivative has terms proportional to the Dirac delta
functions &(g * 1). However, remember that the vacuum in
case (i) becomes unphysical as soon as |g|>1, so that at g
==*1, there is a level crossing between physical and un-
physical states. The same phenomenon happens to the
vacuum in case (ii) at g=1 and to the vacuum in case (iv) at
g=-1. On the other hand, one can observe that for finite-size

a2B4

dg?

-4

FIG. 8. (Color online) Second derivative of the vacuum energy
density for even values of N in the parity sector o=+1.

chains, for both even and odd N, the ground state is smooth
at g= * 1. In other words, the ground state, which coincides
with the winning vacuum state, does not have any singulari-
ties at these points. However, it can be shown that the second
derivative of the ground-state energy at g=*1 scales as
—log N. Consider, for example, the case of an even number
of spins N. In this case, the ground state belongs to the parity
sector with o=+1 without singularities. Figure 8 displays
d’E%) 1dg? for N=6,24,54; at g= + 1, it scales like —log N.

Indeed when g=1, by deriving Eq. (54), one has

2mk )\ [
PE® )/2 l1+cos| —+—
¢ N N
—=-=3

d’g N kezy 2wk @
sin| — + —
N N
1
X
2wk 32
1+9Y+cos| —+—|(y”-1)
N N
1
~—-—1log N (84)
v

for N— o as shown in Fig. 9. The cases g=—1 and N even
(0=+1) and g==*1 and N odd (0= F 1) are analogous.
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a2pl)
dg?

20 40 60 80 100 120 140

vl

x —log N

FIG. 9. (Color online) Second derivative of the vacuum energy
density at g=1 in the parity sector ¢=+1 for N even, from 18 to
320 (dashed line): it scales as —log N (solid line).

The quantum phase transition is forerun by the losing
vacuum whose second derivative contains a Dirac delta func-
tion at the transition between physical and unphysical states.
When N tends to infinity, as we will now show, the differ-
ence between the two vacua at g==*1 tends to zero and
quantum phase-transition forerunners approach the ground
state, building up singularities at logarithmic rates. Indeed, at
g=*1 from Eq. (60), one has

difte 4 1y = L (2_771‘ 7_7)_ (ﬂ‘)
Evac<_1)—Nk§Nfi vty ) 69

where f.(x)=\(*+1-cos x)’+77 sin’x. In the thermody-
namic limit, by applying the same technique used in Eq.
(78), Eq. (85) becomes

. 1 [ T T
diff 4 1y T ~
Ej(£1) 2, {f(“‘N) f(x)}d N2

N — oo, (86)
where we used the equality f%, (0)=—7 (see Fig. 10). In Fig.
11, we display the low energy part of the spectrum (thin

E(,ﬁﬂ (:tl)

vac

0.0030
0.0025
0.0020
0.0015
0.0010

0.0005

—
—_—

o N

10 20 30 40 50

FIG. 10. (Color online) Difference between the two vacua en-
ergy densities at g= = 1: exact result (dotted line) and asymptotic
approximation of order 1/N? (solid line).
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-1.0 ~0.5 0.5 1.0

—-0.5¢

(b) ~15

FIG. 11. (Color online) The thin lines represent the (numerically
evaluated) lowest energy levels of the spectrum of the XY chain,
respectively, with N=4 and N=5 spins; the thick solid and dashed
lines refer to the two vacua energy densities, E(V;)L and Ef,:l respec-
tively. These vacua alternatively coincide with the ground state and
the first-excited state for |[g|=1. When g= =* 1, one vacuum energy
is the ground-state energy, while the other one does not correspond
to any physical level. The transition points are the forerunners of
the quantum phase transition.

lines) and the energy density of the two vacua (thick lines).
At g=* 1, the ground state is the winning vacuum that has
no singularities. The first-excited level coincides with the
losing vacuum for g € (—1,1). Its second derivative diverges
at g==* 1, forerunning the quantum phase transitions. Ob-
serve that they are at the transition between a physical state,
which coincides with the first-excited level, and an unphysi-
cal state, which does not correspond to any physical level.
For |g|>1, the losing vacuum is unphysical. Summarizing,
we identify as forerunners of the quantum phase transition
those points of the losing vacuum energy density whose sec-
ond derivative diverges. These points are associated to single
Bogoliubov fermions and belong to the crossing between the
first-excited level and the unphysical vacuum for finite-size
sysztems. When N— oo, they approach the ground state as
N~

B. Quantum phase transitions in the XX model

The isotropic XX model is very peculiar with respect to
the above analysis because all Bogoliubov fermions are

032102-11



ANTONELLA DE PASQUALE AND PAOLO FACCHI

@) N =14 E
‘ Y
-10 0.5 05 1.0
~1.0f
-1t
(b) N =5 E

FIG. 12. (Color online) The thin lines represent the first four and
five lowest energy levels of the spectrum of the XX chain, respec-
tively, with N=4 and N=5 spins; the solid and dashed thick lines
refer the two vacua energy densities in the parity sectors with
¢=-1 and p=+1, respectively. The forerunners of the (continuous)
quantum phase-transition points are indicated with bold points; they
are given by gk=cos(27ﬂk), keZy.

single and thus, by densely filling an interval in the N—
limit, are forerunning a continuous quantum phase transition.
Therefore, here we are completely bypassing the usual way
to detect such a phase transition that is to look at the scaling
behavior of the correlation length.

As observed in Sec. III, the XX model (y=0) is charac-
terized by the only presence of single fermions and the ab-
sence of Bogoliubov pairs. As a result, all points g
_ 2m(atk . . .
=cos(==y ) (in both parity sectors) with k € Zy can be con-
sidered quantum phase-transitions forerunners [see Eq. (72)
and compare to Egs. (80)—(83)]. Indeed, the second deriva-
tive of the vacua energy density contains a Dirac delta func-
tion at these points and, apart from g= = 1, they all belong to
the first-excited level such as in the XY model (see Fig. 12)
(we will focus on g==*1 at the end of this section). In the
thermodynamic limit, these points forerunning the quantum
phase transition approach the ground state and become criti-
cal points. Consider, for example, g‘q:COS(%)?& *1. The
energy difference between the vacua is now given by

PHYSICAL REVIEW A 80, 032102 (2009)
Egt, v =

0.0035¢
00030, |
0.0025f |
0.0020¢
0.0015}
0.0010

0.0005¢

20 40 60 80 100 120 N

FIG. 13. (Color online) Difference between vacuum energies at
€=3 vs N (dashed line) and its asymptotic approximation (solid

line).
( 270 ) ( 277k> ‘
COS\ —— | —coSs| —
N N

Efg)=—~ 3 [

Niez e
(2776) (277k 77') ]
— |cos| — | —cos| — +—
N N N
1 27¢ 270
+—|cos| — | —cos| — + — (87)
N N N N

By using the same technique of the previous section, one
gets

) 1 2w T T Zf/(x) T 3 //(x)
it =_f o (_)(_ ™\ fe %)
vac(&0) 27), Nfe(x)+ N/ 2 + N 30
1 1 27f 270
+O0| — | [dx+—|cos| —— ] —cos| — + —
N N N N N
(88)
for N— oo, where f;(x)=|cos(27€/N)—cos x|. From the sym-

metries of f, and its derivatives, it follows that Eq. (88)
becomes

if 1 2t 2m0 )\ |?
Egatcf(g{’) ~ N \/[COS(T> - COS(T + ]T/)J

207
~ =

s N—e (89)

(see Fig. 13). Therefore, in the thermodynamic limit, the
forerunners of the quantum phase transition in the isotropic
XX model approach the ground state faster than the ones of
the XY model (with y# 0). Compare Figs. 10 and 13.

As shown in Fig. 12, the intersection points of the two
vacua [which coincide with the level crossing points g.(n)
discussed in Sec. IIT] are characterized by a discontinuity of
the first derivative for finite-size chains. By deriving the en-
ergy difference (73), one can show that the discontinuity of
the first derivative at the points of level crossing scales like
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1/N. Therefore in the thermodynamic limit, the divergence
of the second derivative vanishes, as for the XY Hamiltonian
with y# 0.

Let us finally consider the points g= % 1. On one hand,
they are level crossing points (g=* V1—772,y=0). On the
other hand, following the same criterion introduced for the
XY model, they can be considered as forerunners of quantum
phase transitions. What happens in this particular case is that
these points belong to the ground state already for finite N.
Another crucial difference between the anisotropic case and
the XX model is that, since all Bogoliubov fermions are
single, there are N+ 1 points forerunning the quantum phase
transition. Thus in the N— ¢ limit, they densely fill the in-
terval [—-1,1] of g and yield, as one expects [4], a continuous
quantum phase transition in this interval.

V. CONCLUSIONS

In this paper, we analyzed the XY model on a circle with
periodic boundary conditions. Being interested in finite-size
systems, we did not neglect the boundary term which derives
from the Jordan-Wigner transformation. The Hamiltonian
can be diagonalized by deforming the discrete Fourier trans-
form with a local gauge coefficient depending on the parity
of spins down (see, for example, [4,26]). We accomplished it
by following a approach based on the solution of a modular
equation that derives from the invariance of the Hamiltonian
under translations. We then showed that in the Fourier space,
there are two classes of fermions: single and coupled ones.
This distinction is crucial in order to determine the Bogoliu-
bov transformation. The main point that, quite surprisingly,
has been neglected in the large literature on finite-size spin
models is that the Bogoliubov transformation has a gauge
freedom. By its very definition, a gauge freedom does not
change the physical results. However, it paves the way to a
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deeper comprehension of physical phenomena. We have
shown that, rather than being just a trick for doing numerical
calculations, the gauge freedom is deeply rooted in the math-
ematical structure of the model and allows for many equiva-
lent descriptions of the spin system. A particularly simple
description, well adapted to the thermodynamic limit, is the
mechanism that gives rise to vacua competition. The very
fact that such a description has been used in previous nu-
merical analysis strengthens our results and makes them of
interest for numerical applications.

Moreover, we revealed an unexpected link with the quan-
tum phase transition. In fact, the combination of the Bogo-
liubov gauge with the conservation of parity sectors uniquely
determines in the finite-size model the points where quantum
phase transition will occur when the size of the system be-
comes infinite. They are associated to single Bogoliubov fer-
mions. Indeed, while the gauge of Bogoliubov pairs does not
affect parity, the gauge of single fermions does change it and
couples physical states with unphysical ones (with wrong
parity). It is just at the level crossings of these states that
quantum phase transitions will occur.

There is considerable interest in the study of entanglement
for quantum spin chains, both in view of applications and
because of their fundamental interest (see, for example, the
results concerning the XX chain [16,33,32]). Our approach
can be used in the study of the properties of multipartite
entanglement of the ground state in terms of the distribution
of bipartite entanglement [34,35] and in the investigation of
the possible connections with quantum phase transitions in
the thermodynamic limit.
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