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Abstract. A procedure based on a version of the Erlangen programme is used
to construct the absolute Minkowski space-time of special relativity and the
Newtonian space-time starting from groupoids of transformations. The pas-
sage from special relativity to Newtonian geometry is performed at the level of
groupoids. A frame independent Lagrangian (and Hamiltonian) formulation
of dynamics is formulated.
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1. Introduction

In the first part of this paper the absolute Minkowski space-time of special rela-
tivity will be constructed starting from the transformation laws of the observed
data of an event recorded by different relativistic observers. In particular, we will
consider a class of “inertial” observers, each one equipped with its own “private”
affine space-time where the time and the relative position of a physical event are
recorded. All observers in this class are assumed to be equivalent and their pri-
vate space-times are all assumed to have a Minkowski metric. The information
exchanges between different observers are represented by affine isomorphisms that
preserve the metrics. From the above physical assumptions this family of isomor-
phisms turns out to be an affine groupoid. By applying a procedure based on
a version of the Erlangen programme, the absolute Minkowsi space-time is con-
structed starting from the groupoid of Poincaré mappings.

The same procedure is xeroxed starting from Newtonian observers whose ob-
servations are connected by the affine Galilei groupoid that preserves simultaneity

* Supported by PRIN SINTESI.
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and the spatial Euclidean metrics. The resulting abstract space is the absolute
Newtonian space-time.

Finally, we will show how the reduction from special relativity to Newtonian
geometry can be performed at the level of the above-mentioned groupoids.

The second part of the paper will be devoted to particle dynamics in Newto-
nian space-time. In particular, we will consider a homogeneous formulation whose
dynamical solutions are in the space-time-energy-momentum phase space.

Starting from the observation that the Lagrangian function of any observer
is not invariant under Galileian transformations, we will conceive the intrinsic
Lagrangian as a section of a suitable affine bundle, whose structure will turn out
to be related to the Bargmann group of transformations of the quantum phase of
the wave function under the Galilei group [1].

The general theory of variational principles developed in [3,4] will be special-
ized to our affine setting. Again, the spaces and the pairings needed to compute
the variational principle will be constructed starting from observers’ groupoids
and their compatibilities. The resulting variational principle will produce a frame
independent Lagrangian (and Hamiltonian) formulation of dynamics in the space-
time-energy-momentum phase space [2].

2. Preliminary constructions

We will present a number of constructions obtained by applying procedures based
on a version of the Erlangen programme of Felix Klein. In preparation for these
constructions we provide an outline of the procedures that will be used through-
out the paper for constructing all the spaces needed and we establish notational
conventions

2.1. A version of the Erlangen programme

We consider an indexed family {A;},cr of vector spaces. With each pair (¢,7) of
indices we associate an affine isomorphism

Q5 t Aj = Az . (1)
The groupoid properties
i = 1y, (2)
and
Oél‘j o Oéjk = Ok (3)

are assumed to hold.
We introduce an equivalence relation in the set

A= ({1} x 4) (4)
i€l
of pairs (¢,a;) such that a; € A;. Two pairs (i,a;) and (j,a;) are equivalent if
a; = oj(a;). Let A be the quotient set. For each i € I there is the chart
ai: A= Ai[(G,a5)] = ai = cujlay), (5)
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whose inverse is the canonical projection

a;t A — Aai—a=[(i,a5)]. (6)

K2

Relations

Q; © ozj_l = (7)
hold and are regarded as coordinate transitions functions on A which will then
be proved to be an affine space. The model vector space, its dual space and the
corresponding pairing will be constructed by using groupoids associated with the
given groupoid (1).

Linear parts

&ij : Aj = Al (8)
of the affine mappings (1) form a groupoid of linear isomorphisms. Then, applying
the same procedure as above, we introduce a new equivalence relation in the set (4)
and obtain a quotient set A and charts

compatible with the linear groupoid (8).

We show that the set A is a vector space and each chart @; is a linear mapping.
The sum a' + a? is defined by

a' +a® =a; ' (@(a') +a;(a?)) (10)
and multiplication by a number is defined by
Aa =a; " (Aa;(a)). (11)

These definitions are correct since

and

=a; ' (\a;(a)) (13)

for each pair (i,7) of indices. The linear operations in A have all the required
properties since they are copies of the corresponding linear operations in the vector
spaces A;. A chart @; is a linear mapping since

@ila' +a?) =@ (@ (@ila!) + @i(e?) ) = @i(a) + @m(a?) (14)
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and
a@(a) = @ (a;l ()\ai(a))) = \ai(a). (15)
We show that the set A is an affine space modelled on the vector space A.
The ‘difference’ a®? — a' € A of two elements of A is defined by
a® —a' =a; ' (i(a®) — a;(al)) . (16)

This is again a correct definition since

a; ' (a;(0®) —aj(a")) =a; " (aij (aﬁ (i(a®)) = azi (ai(al))>)

=a; ! (ai(aQ) - ai(al)) . (17)
It follows from
@ile? — ) =@ (@ (aile?) - ai(a))) = ai(e®) —asal).  (18)
that each chart «; is an affine mapping and the corresponding chart @; is its linear
part.
The mappings

dual to the mappings @;; form a linear groupoid. Following the established proce-
dure we introduce an equivalence relation in the set

A = ({iy x 47). (20)
iel
A quotient set A" and charts
i A = AL (k)] by = adi(hy) (21)
are obtained. Results derived for the linear groupoid (8) are valid for any linear

groupoid. It follows that the set A" is a vector space and charts are linear mappings.
It will be shown that the mapping

af t AY = A" b [(6,hy)] (22)
is the dual of @; as is akfady implied by jhe adopted symbol.
The vector space A is the dual of A. The pairing
(,):A'xA-R (23)
is defined by
(h,a) = (a7 (h),@(a)) . (24)
This definition is correct since
(7 ()@ @) = (o™ (@ (), s (@i(a) )
= (a; 7! (h), qi(a)) - (25)
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It follows from
(7 (i), a) = (@i~ (o} (k) @i(a) ) = (i ila) (26)

that o is the dual of @;.
Let there be two vector spaces A; and A, associated with each index ¢ € T
and let

oyt Ay Ay (27)
and

g Al A (28)
be two affine groupoids. If for each index ¢ there is an affine mapping

@i A — A (29)

and if the family {¢; }ics is compatible with the groupoids in the sense that
Pi = ;0 pj O (30)

for each pair (7, ) of indices, then a mapping

p: A— A (31)
is defined by
wzag_locpioai. (32)
The definition is correct since
o topjoa; =a; toajjopjoa 00 =ai opioa;. (33)

The family {3, }ier of linear parts is compatible with the linear groupoids

@i Aj— A (34)
and
@ AL e AL (35)
A mapping
A A (36)
is correctly defined by
p=a, topoq;. (37)

The mapping @ is linear since it is the composition of linear mappings. It is
the linear part of the mapping ¢ since the composition

) lop o (38)

a topioa;. (39)
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2.2. Notational conventions

We will be working with Euclidean vector spaces. Let (Q be an Euclidean space
with a metric tensor h : Q@ — Q*. The symbol av will be used to denote the
value of a covector a: @) — R applied to a vector ¢ € Q. The covector h(v) € Q*
associated with a vector ¥ € @) will be usually denoted by ¥ -. The evaluation of
the covector ¥ - on a vector « is the scalar product ¢ - . The norm of a vector ¢
is defined by

o] =vv-v. (40)

Matrix notation will be used in the vector space R x ) denoted by

<ﬂ5> (41)

An element of this space will be written as a 2 X 1 matrix (a column vector)

(2) (42)

The dual space of covectors in R x @) is the space R x Q* denoted by

(R Q). (43)
A covector will be written as a 1 x 2 matrix (a row vector)
(ab) (44)

and the evaluation of the covector (44) on the vector (42) is the matrix product
(ab)<2)=ax+bg. (45)

Let @ and Q' be two vector spaces. A linear mapping from R x Q to R x Q' is
represented by a 2 x 2 matrix
a b
(¢%). (46)

with a € R, b € Q*, ¥ € @', and « a linear mapping from Q to Q. Products of
matrices with linear mappings as components are interpreted as compositions. The
same interpretation is applied to ‘products’ of linear mappings. The convention

(3)-x ()r(s) e

will be used for values of a differentiable functions.

3. The Minkowski space-time

The outlined procedure will be used to construct the absolute Minkowski space-
time of special relativity.
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3.1. Lorentz transformations

Let @ be a Euclidean vector space of dimension 3 with a metric tensor h : QQ — Q*.
A Minkowski metric of signature (1,3) in the space R x @ is represented by the
metric tensor

R N ot -
g:(Q)H(RQ):<5q,)»—>(025t—5q~). (48)
A Lorentz transformation is a linear mapping

- (5)-(3)

preserving the Minkowski metric relations in the space R x ). This property is
expressed by the equality

Ffogofi=g. (50)
Equivalently, if
ot’ _( ot
<5§/>N(5q—*>7 (51)
then
*(6t')? — [|6q"]1* = ¢*(5t)* — I8¢ 1> - (52)

An affine mapping

- (3)-(3)

is called a Poincaré transformation if its linear part 7z is a Lorentz transformation.
Let @ be a Lorentz transformation and let

(3)-(5)

ca? — | = ¢ (55)

It follows from

that
2 =14 > 1. (56)

The vector @ = 2713 can be introduced since = # 0. If 2 is positive, then 7 is said
to be an orthochronous. The general relation

r=x(VI—eoP) (57)

follows from (55) with ¢ = x¢/. We have obtained a useful relation

u(é)zi(l—c%ﬂﬂA(;). (58)
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We will find the general form of the Lorentz transformation 7 in terms of the
vector ¥ and an isometry s : Q — (. The mapping [z preserves orthogonality. If
¥ = 0, then vectors

(5)-=(3) m n(%)-(5)

are orthogonal. It follows that

5t =c( 6~)<§t/,>=0. (60)

Hence,

The matrix form

mx( 5 0) (62

of 71 follows from (59) and (61). The component  : @ — () is an isometry.
If ¥ # 0, then we introduce orthogonal projection operators

Prit: Q= Q: 8¢ — |17 7*(5 - 6q)7 (63)
and
prt=1qg - Prl (64)
in @, and orthogonal projection operators
M(éﬁﬂ) (65)
and

0 0- 1 0- 1 0-
E_(GPH>_<61Q)_(6PH) (66)

in R x Q. The image of M is a Minkowski plane with a metric of signature (1, 1)
and the image of E is a Euclidean plane. We introduce the mapping

—\"1 /1 ¢ 32v- 0 0-
X:i( 1_0_2||“H2) (17 Pl )i(ﬁ PTJ‘). (67)

(§) ana v () (69

form an orthonormal basis in the image of M since

(c —6-)(é)c2, (69)
a2 (o =) (3 ) =-1. (70)

Vectors



Vol. 7 (2008) Frame Independent Dynamics 15

and
i (o =) (5 ) =o. ()

The mapping x applied to these vectors produces vectors

() ==(viemmr) " (}) 72
o (3 ) =#a (VieemmE) ()

satisfying the same orthonormality conditions. In addition, if §¢'is orthogonal to v,

then
()= (5) i

We conclude that x is a Lorentz transformation. It follows from

wron(4)-(3)

that
2

o () () (4 ()

K
where £ is an isometry in Q. This expression is valid also in the case of 7 = 0 with
an arbitrary vector ¢ # 0 used to defined the projection operators.

3.2. Relativistic observers

We consider a class of observers indexed over a set I. To each physical event an
observer O; assigns a time t; € R and a relative position ¢; in a Euclidean vector
space (; of dimension 3 with a metric tensor h; : Q; — Q. A motion of a material
point is seen by an observer as a one dimensional submanifold in the observer’s
space-time R x @;. This submanifold is the image of a differentiable embedding

e (3)e-()

The motion of a point distant from any possible sources of interaction is said to
be inertial. An observer is said to be inertial if any inertial motion is seen by the
observer as a straight line presentable as the image of an affine mapping

R t?Jrs:c
’Y.R—>(Qi).sn—>(q§,+sg). (78)

Only inertial observers will be considered.
A Minkowski metric of signature (1,3) in a observer’s space-time is repre-
sented by the metric tensor

gi:(gi>—>(R Qj):(?%)H(CQ&i —0G; - ). (79)
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(4) m (%)

assigned to the same physical event by two observers O; and O; are in the relation

() (%)

where p;; is an affine mapping. The observers find that the linear part m;; of w;;
preserves the Minkowski metric relations in the two space-times Rx @Q; and Rx Q);.
This property is expressed by the equality

Vectors

i 0 giofh; = gj - (82)
We use an arbitrary isometry ¢ : Q; — @; to obtain a convenient factorization

_ (1 G-
Mijzﬂo(@ ;) (83)

R R
T — 84
K ( Qi ) ( Qi ) (84)
is a Lorentz transformation. The expression

—1
21 INNGETE
- (,/10 2||Uij|2) < 7. Pl )

J

0 0 - 1 0 At
L0 0 10 i
( 0; Prt >] ( 0i ki )+ ( Adij ) (%)

for the Poincaré mapping p;; follows.
The world line of the observer O; in the space-time of this observer is the
image of the mapping

a(3) (i) o

Seen by the observer O; this world line is the image of

The linear mapping

Hij =

==

,uijo’yj.R—><Qi>.tJHtJ(g,)—i-(Aq,ij). (87)
This mapping is converted to
R t;
v R < Qi > i ( Agij + (ti — Atyj) vy > (88)

by setting t; = 27! (t; — At;;) and ¥ = 7 '4;;. The parameter ¢; in (81) is the time
of the observer O;. The vector ¥; is the velocity of the observer O; in @; and

(&) <89>

is the initial position in R x @); of the observer O; at t; = At;;.
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3.3. The absolute Minkowski space-time
A Poincaré mapping
Hij - Mj — Mi (90)

is assigned to each pair of observers O; and O;. The spaces

Mi:(gi) and Mj:(gj> (91)

are used. The family {11} jjerxs is a groupoid. The family {f;;} jyerxr of
Lorentz mappings

Fij  Mj — M; (92)
and the family {7}, }; j)erxr of dual mappings
Hiy s M M7 2 hiv— g5 (hi) = hi o iy (93)
with
Mf=(R Q) and M =(R Q) (94)

are again groupoids.

The affine absolute Minkowski space-time M is obtained by applying the pro-
cedure described in Part A to the Poincaré groupoid {fii;}i jyerxr- When applied
to the Lorentz groupoid {ﬁij}(i,j)elxl the procedure produces the model vector
space M. The dual M of the model space is generated from the dual groupoid

{3 Y gyerxr
There is a Minkowski metric tensor

gi:(gi)H(R Qj):(?%)H(c26ti 57 ). (95)

for each index i. The equality (75) expresses compatibility of the family {g;}icr
with the groupoids (83) and (82). A metric tensor

g: M — DM . (96)
of signature (1, 3) is defined by
g=T;©giof;- (97)
It
_ ot;
i (v) = ( 57 ) (98)
then
(9(v),v) = 16ti]* — [|0G]| - (99)

We impose certain saturation requirements on the Poincaré groupoid. Two
observers O; and O; are considered equivalent if

10
=1 = , 100
=g %) (100)
where £;; : Q; — Q; is an isometry with det(k;;) = 1. Let
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be a Poincaré transformation. Be setting Q. = Qi, tjx = fiji © fix and pi; = /Lj_*l
for each index j € I a vitual observer O, is constructed. The Poincaré groupoid
{15} i,j)erx1 is saturated if for each such construction there is an index & € I such
that O and O, are equivalent.

There is a Minkowski metric in M. If Poincaré groupoid is saturated, then
no other structure is present in the affine space M.

Additional structures can be introduced in the space-time M if the groupoid
is restricted. We give an example. The groupoid is composed of only orthochronous
Poincaré mappings. The saturation requirement is modified by using only or-
thochronous mappings ;. and an unchainged definition of equivalence. The re-
sulting space-time M has a temporal orientation. Examples of other additional
structures can be easily produced.

4. The Newtonian space-time

The outlined procedure will be used to construct the absolute Newtonian space-
time. The passage from special relativity to Newtonian geometry is performed at
the level of groupoids.

4.1. Galilei transformations

Let @ be a Euclidean vector space of dimension 3 with a metric tensor h : QQ — Q*.
The metric tensor and the canonical projection

T;<]§>HR;<2>H¢ (102)

establish the structure of a Newtonian space-time in the space (g)

Let
- (3)-(5)

be an affine mapping, let the linear part 7 of this mapping conserve the projection 7
in the sense that
TOU=T (104)

and let the linear mapping A : Q — @ characterized by

(5) (ko)

be an isometry. If all these conditions are satisfied, then 7 is said to be a linear
Galilei transformation and the mapping v is an affine Galilei transformation.
The projection 7 is a covector represented by the matrix

(1 0-). (106)

u=<f7 ';) (107)

Let
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be a linear Galilei transformation. Condition (104) in its matrix form
S a b o
(1 0-)(6A):(1 0-) (108)

implies that @ = 1 and b = 0-. The mapping X in (107) is an isometry since it is
the mapping characterized by (105). We have obtained the general form

(1) )

of a linear Galilei transformation with A an isometry and ¢ an arbitrary vector.

The mapping

_ (10 At

(1T (2) 10
is a general affine Galilei transformation.

4.2. Newtonian observers

We consider a class of observers indexed over a set J. To each physical event an
observer O; assigns a time ¢t € R and a relative position ¢ in a Euclidean vector
space (); of dimension 3 with a metric tensor h; : Q; — Q7.

Vectors

<Z)GN"_<H§> and <%)ezvj_<gj) (111)

assigned to the same physical event by two observers O; and O; are in the relation

(4 (4)

where v;; is an affine mapping. For each observer O; there is the projection
t; ~ t;
i Ni—=R: [ 2 )= (1 0;-)( = )=t (113)
di qi
The observers find that the linear part 7;; of v;; preserves the projections 7; and 7;
in the sense that

TiOE-j =Tj (114)

and that the mapping A;; : QQ; — @, characterized by

/0 0
v ( 0q; ) B ( Aij0q; ) (115)

is an isometry. It follows that the linear mapping 7;; is represented by the matrix

1 0;-
<17z'j Aij ) (116)
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and the affine mapping v;; is the mapping
t; 1 0 - t; Aty
vii: N; — N : s — | 2 J J +< _Z,J)
Lo < dj ) ( Ui Aij > ( qj ) Adij

t; At >
= - S+ - .17
< tj0ij + Xijd; ) ( Agij (17)

We say that v;; is an affine Galilei mapping and its linear part v;; is a linear
Galilei mapping.

The world line of the observer O; in its own space-time is the image of the
mapping

j
Seen by the observer O; this world line is the image of
1 At
i =Vij07 t R— N;j:t; —t;vU;, N + - 119
Vij J O j J J J<,Uij> <AQij) (119)
converted to A
. " ti tij
%J.R—>Nl.tl»—><tiﬁij >+(Atﬁj ) (120)

The vector 7;; is the velocity of the observer O; in @); and

Atij
q 121
( A ) 2y

is the initial position in R x @; of the observer O; at t; = At;;.

4.3. The absolute Newtonian space-time
Galilei mappings v;; and 7;; are assigned to each pair of observers O; and O;. The
families {45} jyesxs and {7} j)esx s are groupoids.

The absolute Newtonian space-time N is obtained by applying the procedure
described in Section 2 to the affine Galilei groupoid v;;. The affine charts

are introduced. The space N is an affine space modelled on the vector space N

constructed by applying the procedure to the linear Galilei groupoid v;;. The linear
charts

7;: N — N; (123)
are created.
There is a linear mapping
7: N —R. (124)
If 5
_ t;
vi(o) = ( n ) , (125)
then

T(dx) = dt; . (126)
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The number 7(xo—x1) is the time elapsed between events x1 and x5 in N. Events 2
and zo are simultaneous if T(xq — 1) = 0.
In the space

To=710)cW (127)
there is a Euclidean metric represented by a metric tensor
h:Ty— Ty . (128)
If
wi(se) = (¢ (129)
3 6@; )
then

(h(6z),6z) = [|6G; || . (130)

The metric h expresses geometric relations between simultaneous events. The norm

ez — z1ll = /(b2 — 21), 22 — 1) (131)

represents the distance between simultaneous events x; and x».

The concept of saturation introduced for the Poincaré groupoid is applica-
ble to the Galilei groupoid with the Poincaré isomorphisms replaced with Galilei
isomorphisms. We will see from the discussion in the subsequent section that re-
quiring a complete saturation of the Galilei groupoid is not necessarily the best
choice.

4.4. A derivation of the Galilei groupoid from the Poincaré groupoid

We single out a family of observers {O;}ics with J C I. Observations made by
the observers within the family are related by orthochronous Poincaré mappings

—1
P T— 1 20,
_ =2||a7. . 1|2 (¥
( L ) ( v Prl )
0 0 - 1 0;- Aty
i 5 I . 132
+( Oz PTJ‘ >‘| ( 07, Kij >+( AQij ) ( )

The observers are prepared to tolerate errors below a certain proportion A of
the quantity being measured and errors in absolute time measurements below a
threshold T'. If the relative velocities of observers within the family are limited by
the inequality

Hij =

Moyl < A, (133)

1 0_2’(71';' . > ( 1 6]‘ . )
q 1 134
< Vij Lo, 0; ki (134)

are valid approximations of the linear parts of the mappings y;;. If an approximate
linear part is applied to vectors
ot;
(5) )

then the matrices
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such that

—

5qj

—1
C
5t

<A, (136)

then

6tj + 672171']' 'Kijéaj _ 1 672’(7“ : 1 6]‘ . 5tj (137)
OtUij + Kij0q; vy g, 0; ki 0;

is correctly approximated by

If §t; < T, then (138) is a correct approximation even if the inequality (136) does
not hold.

We consider the Minkowski geometry the correct structure of space-time. We
have identified limits of applicability of the Newtonian structure of space-time.
Observers can use this structure if the observed velocities, observed distances,
and observed time periods are small. There is no precise correspondence between
events observed by these observers and the Minkowskian events. Different fami-
lies of Newtonian observers can be considered. Observations made by observers
belonging to different families are not related. It is customary not to impose the
limitations explicitly. Saturated Galilei groupoids can be used only if the limita-
tions are disregarded.

5. Particle mechanics in Newtonian space-time

The Lagrange equations for a particle of mass m are derived by an observer O; by
applying a variational principle to the homogeneous function

~ tz t/- m ? / tz /
Li:NiXNiHRZ i s _71, = = tZ_Uz — ti' (139)
qi q; 2 qi

The family {Zi}ie J, however, is not compatible with the groupoid v;; x 7;;
and then it does not produce an intrinsic Lagrangian function on N x N.

In order to give an intrinsic definition of a Lagrangian, we will conceive it as
a section of a suitable affine bundle and, as a consequence, we will introduce all
the required definitions to write the variational principle.

=/

q;
/

5.1. Geometric constructions

This section is devoted to the construction of the spaces needed. In particular, the
first space Y we will introduce is the above-mentioned bundle, where not only the
Lagrangian, but also all the pairing used will take their values.

The second space S, related to the differential of the Lagrangian, will play
the role of a dual space of the Newtonian N.

The last one is the energy-momentum space P. It is another dual space of N,
but with respect to a noncanonical pairing [2].
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5.1.1. The Bargman affine bundle. Let us consider the linear Galilei groupoid
{74} i, jyesxs and put, for any i € J,

Yi:(gi>xﬂ%. (140)

Then define the affine groupoid
nij Yy =Y

t/- _ t/4 m . 2 - .
: (( qi{ > 7yj> — <Vz‘j ( q% ) Y5+ 5 19l th — mij; 'q;) . (141)
J J

The method outlined in Section 2 produces an abstract affine space Y and affine
charts

ni:Y =Y. (142)

Moreover, the groupoid

_ t’ _ t
My Y = Y5 (( q'»]{)>yj)P—>(1/ij(q‘Z(),yj>, (143)
J Y

composed of all the linear parts of n;; produces the model vector space Y and
linear charts

n:Y =Y. (144)
It follows from Mij = Vij X 1g that Y = N x R.

The space Y is the total space of an affine bundle over N. To prove it, consider
the canonical projections

Since

_ t
(Zij 000 nji) (( = > yz>
7

a((4)).

the family {v;}ics is compatible, in the sense of (30), with the groupoids 7;;
and 7;;. As a consequence, a mapping

9:Y =N (147)



24 F. Barone et al. Qual. Th.Dyn.Syst.

is defined by
V=1, 0 0m;. (148)
On the other hand, the canonical projections (145) are linear mappings com-
patible also with the groupoids 77;; and 7;;. It follows that the linear part of (147),
defined by
52?{10191'0@», (149)
is the canonical projection
9:Y=NxR—N. (150)
Finally, let y' and y? be elements of Y with ¥(y?) = 9J(y') and put

t
wtt) = (4 )at). (151)
2 t; 2
ni(y°) = 7)Y (152)
K3
2 1 -1 t; o 1\ _ (=1 [ t 2 1 Y
Yy -y =T g )vimv )=\ g )i ) eV (153)

We conclude that the mapping ¥ is an affine fibration and (150) is the model vector
fibration. The Lagrangian will be a section of .

and

5.1.2. An evaluation space. The next construction will be related to the differential
of the Lagrangian. We start again by defining an affine groupoid

oS — St (a; by )= (a5 by )i+ (=250 mu, - ), (154)

where, for any i € J,

Si=(R Q). (155)
In correspondence to o;; we have an abstract affine space S and affine charts
0;: S —S;. (156)
The model vector space S and linear charts
i S — S, (157)
are then constructed from the linear groupoid
Tyt (B Q)= (R Q) (o b)) (a) B )7 (59

We will introduce a paring in S x N and its “linearization” in S x N. To this
end, let us consider for any index 7 € J the mapping

(VS x N, =Y,

(o () ()0 (%)) o
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The family (159) is compatible with the groupoids
045 Xﬁij:SjXNj—)SiXNi

and
Nij 2 Yy =Y

as established by

b

_ ot;
i <Uji( a;b; );Vji( 5q; >>
j

=nij <( aib; ) Tij + (=% 101> mji - )’”j’(

e (2 ) oo ()

+ (=g lstms ) )
() e (2)
(Camiy. (22))

Consequently, the pairing

(, W iSx N oY (b,dx) — n; ! (<ai(b),?i(6x)>h)

is well defined.
Analogously, the family

C >5 S; Xx N; = Y;
ot; ot;
. / / i 4 /
(e (5))- ()
is compatible with the groupoids
51']' XﬁijZSj XNj—>SiXNi

and

My Y; = Yi,

b)) (

ot;
oG

%

ot;
oG

),

)

25

(160)

(161)

(162)

(163)

(164)

(165)

(166)
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as established by

;
_ ) _ ot; _ _ ot;
mj<0jz'( a; b ), ij'( 5 >>j= mj<( a; b )Vijvl/ji< 5q

b
ot;
!/ /
a, b} ) ( 5 )>Z (167)
Therefore, the pairing

()Y SxN =Y (b,0x) -7, ((m 7i(6) >“) (168)
is well defined.
Notice that for each dz € N the mapping
( ,62)" : S =Y : b (b,bz)° (169)
is an affine mapping and the mapping
(,62)": S =Y :b' — (b, 0z)" (170)

is its linear part. The pairing (168) is bilinear.
The groupoid ;5 conforms to the description of the groupoid 77}; dual to the
groupoid 7;;. It follows that the space S is the dual N* of N. Pairings

(,)i:SixNi—ﬂR:((a; b;),(gfji))H(a; b;)(?f}é), (171)

are compatible with the groupoid
Eij XvijZSjXNj—)SiXNi. (172)
The compatibility follows from

<Uji(a§ b;)ﬂ/ji(g% >>=<( a bé)Vij,Vji(ggi >>
J J
~ (o o) ()

<(a; b;),(gg >> (173)

(,):SxN =R (,62) — (7,(b'), 7,(62)), (174)

is the canonical bilinear pairing. It can be defined by

(,)y=prro(, ) (175)

The pairing
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in terms of the canonical projection
prr:Y =N xR —R. (176)
5.1.3. The energy-momentum phase space. Let us define the affine groupoid
Tij * Pj — PZ
— m |~ |12 " -1
(e Pj%*((% P; ) i+ (=% |51 m%r))% » (177)

where, for any i € J,
P=(R Q) (178)

-1 0, -
P = - ‘ . 179
“ ( 0 1o ) ( )

An abstract affine space P and affine charts

m: P — P (180)

and

are constructed. The model vector space P and linear charts
T P— P (181)

are constructed from the groupoid

fijZPjHHZ (6; p; )'—>( 6;- p;v )ajijia;l. (182)

For each index ¢ there are mappings

()i P x Ny — Y,
T )~ () mn(5)) 0o
and

VP x N, — Y,

(e (2 )= (0 ) et wiya (5 ) s

The family (183) is compatible with the groupoids

Ti; X Uij : Pj x Nj — P; x N; (185)
and
my Y Y, (186)
The family (184) is compatible with the groupoids
Tij X Ui+ Pjx Nj — P; x N; (187)
and

Ty Yy — Vi, (188)
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),

28

Compatibilities follow from
ot;
Nij <7Tji( € Pi ), ( 5(51

Vji

Qual. Th.Dyn.Syst.

=W’<(( e pi )aimi + ( — T2 mii - ) a7l vs (
I (e pi)os ot;
= Mij \ Vji 5q ) i Pi )@ 5,
m = - _ [
(gl w5 )
- (5ti 6ti
- 5(}} a( € Pi )ai 5q_;
~((e i) ot \\*
- (3 p'L ) (Sq; ;
and
— — — 5ti ’ — / / 5
nij Trji( € P; )7 Viji 5(2 _ = nij ( € P; )OéiVi]‘O(i y Vii
J
_ (= ot;
= Mij (Vji< 5q; )7( € Pj )O‘i<
ot; ot;
#
ot;
— / / (3 .
(e (5 ),
Consequently there are pairings
() s Px N =Y s (p,00) = ((malp), 72(00)) )
and
(,)Y:PxN—=Y:(p,ox)—T; (<7rl 1/1696>ﬁ)
For each éz € N the mapping
(,6x)f : P—Y :pw (p,ox)
is an affine mapping and the mapping
(,ox): P—>Y :p — (p,oz)f
is its linear part. The pairing (192) is bilinear.
Pairings
ot; ot;
gy 2 : : rop! : "opl ) ay i
():Px N, —R: (( ¢ bl )7( o ))H( ¢ pl )al( o

St
0G;

),

(190)

(191)

(192)

(193)

(194)

) (195)
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are compatible with the groupoid
fij XfijIPjXNjHPZ‘XNZ‘. (196)
Compatibility is established by

b b
_ _ ot; _ ot;
<7"ji(6; pg)’yﬁ(gq—; )>j:<( € pg)”l’]’v”ﬁ(&ﬂ )>J
(o St )
= ( 61 pz )((S(j;

() o

b

i

A pairing
< ) >b : ? X N —R: (plv(sx) = <ﬁ2(p/)7vl(6x)>
is defined. The formula

(198)
(, ) =prro(, )t (199)

is an alternative definition.
The family {«; };cr of matrices «; introduced in (179) interpreted as mappings

Pi—Si: (e pi)— (e pi)o (200)

is compatible with the affine groupoids

mij: P — P (201)
and

o551 S; — S5 (202)
and also with the linear groupoids

i P — P (203)
and

T S; — 5. (204)

Compatibilities follow from

0ij<(ﬁji( € P ))aj) Z%(( ¢ pi )i+ (=% ||T,)" ma, - ))
and
O'ij((ﬂ'ji( e; Pj ))%‘) :Eij(( € Pi )Oéi?ij) =(e P )ai. (206)
We have mappings
a:P—S:p— o (m(p)y) (207)

and
a:P—S:p —o (Tip)a). (208)
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Relations
(p,6z)* = (a(p),dz)", (209)
(. 6a)t = (a(p'), 62)", (210)
and
(p',0x)" = (@(p), 6x) (211)

are established.
5.2. The Lagrangian
The mapping

LZ‘Z Nz X .ZVZ — Y;

()= () 3
Gi q; % ) 2
is a version of the usual Lagrangian

~ : '
LZN1XNZ*>R<<t—Z»);<t—%I>)'_}m
qi q; 2

The argument ¢ in the Lagrangian is always positive. Compatibility of this map-
ping with the groupoids

>

q;

t

2
t:

=/

q;

t

t;> (212)

2 t
t;Ui<qj )t;. (213)

7

Vij XfﬁiNjXNj—)NiXNi (214)

and
i Y; —=Y; (215)

follows from

t; t;
ii | L | vig : ,Vis s
o (1 (e (5 )7 ()
_ t; m (ji/ : / t; /
=MNij | Vji q "y Uji + Aji m tj_Uj Vji 7 t
t m @, Li \
_ A [ 2| R 5 A (O
(( q{) 2 0t G )"
t; t
=17, A I . 216
((5)(%)) -

The absolute Lagrangian is the mapping
L:NxN-=Y (217)

=

defined by

L=n'0oLjo(v; x7). (218)

(3
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5.3. The differential of the Lagrangian
The differential of the Lagrangian L; is represented by mappings

: ) t; th
(% )onemos (5).(4))
1
- ()
and
K ¢ qi q;
— | =2 (Tf, -U; L m
2 ‘\ @
The first of these mappings is compatible with the groupoids
Vij XvijINjXNj%NiXNi
and

Eij : Sj — Sl .
The second is compatible with the groupoids
Vij XfﬁiNjXNj—)NZ‘XNi

and

Compatibilities are established by

_ oL, oL, ti\ - [t
Oij at; 93, Vji 7 2 Vii q
— ou t; U, t;
=ro (2 (o () 2 (n(3))

q
oU; t; U t:
(H () (8
o _eu. f ti N\, _au, [ ti \u
(- () (%))
_( 8L, dL; ti t;
=\ ot o @)\ q

(T; °

t!

i

)

31

2 )t; ) (219)

> . (220)

(221)
(222)
(223)

(224)

(225)
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oL, 9L, t; t;
(% %) ((5)(5)) (226)

An absolute version of the differential is represented by mappings

L oL -

%;zgfo(gg % Yowix7): NxN—5 (227)
and

oL oo _

agzafo(%% 5% )owixm): NxN—5. (228)

5.4. Observed dynamics of a particle

We will formulate the Lagrange equations for a trajectory

((g)(a i )):R—>Ni><Pi (229)

of a particle of mass m in the space-time-energy-momentum phase space of an
observer O;. External forces will not be considered. The equations are first order
differential equations. The derivatives

<<Z>(€’ ! )):R—>Ni><Pi (230)

of the trajectory are involved. A first order differential equation in the space-time-
energy-momentum phase space is a set

D CN; x P xN; xP;. (231)

The trajectory (229) is a solution of the equation if

(( g,gg )’( ei(s) mi(s) ),< 2//((;9)) ),( gi(s) m(s) )) eD (232
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for each s € R. The dynamics of the particle is represented by the differential
equation

] ’
Di_{<(g>v(ei pi)v(g/)a(eg p2)>€Nz‘><Pz’><Ni><Pi;
/ m |27 t; g -
t; >0, (ei pi )Oéz‘: —5H7H - U; i mey ,

K2

) ti ; ti
(8 (8) #(2))e) oo

This equation is derived from the variational equalities

(3 ((5) (%)) %5*5(@%)’(%)))(?%2
)

and

oL, (( ti ti oL, (( ti t at!
ot!, q; ’ (71/ oq] (jz ’ (E/ 5@/

5.5. Lagrangian formulation of dynamics in the absolute
space-time-energy-momentum

A space-time-energy-momentum phase space trajectory consists of mappings

v:R—N (236)
and

m:R— P. (237)
Derivatives are mappings

v:R—=N (238)
and

7 :R— P. (239)

Dynamics is governed by the differential equation

D= {(a:,p,a:’,p’) e NxPxN xP;

@) >0, ap) = Gr(e) a) = Golea) (@0

derived from the variational equalities

oL, g
<ax(m,w ), 6:C> =

(o', 6z)F = (al(p'), oa)" (241)
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and

i
<§j(x,x')75x’> — <p,(5l‘/>ﬁ _ <Oé(p),(5$/>h ) (242)

5.6. The Legendre transformation
For each observer O; there is the function

EiZNiXNiXPi%R

() (5) 0 m)e ()

— 2
milg; / t; !
—— = U 2 )t 243
2 t; ) + T < @ ) ) ( )
with a positive argument .
Compatibility of the family of such functions with the groupoids
Vijxﬁijxmj:ijijPj—»NixNixPi (244)

follows from

—
o q;
vji + )\ji <tf >

4 o2 . t!
~Cem)on( )1t mie) (g, g )

112
mo o2 m || q; I t;
—§||Uij|| tQ—E ?z ti +mii; - q; + Us é)t;
12
t m||q! t;
= (e Pi)%(q{_/)—z i ti + Ui (jlo t;

w (1) ()t m)

A function
E:NxNxP—R (246)

is defined by
E:EiO(Vi XﬁiXﬂ'i). (247)
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The formula
E=prpoE (248)
with
E:NxNxP—=Y:(z,2,p)— (p,a) — L(z,2) (249)

gives an alternative definition of the function F.
The differential of the function F; is represented by mappings

- : . ti t;
(86% %E%):NixNixPzaSi: ((qi),(é,),(e,; pz))
ou, | ti ou; i
(#(3)e w(5)) e
O OB ). N x N;x Pr— S (1 b (e o)
ot;  ogq/ )tV @ i i ¢ )\q ) €i  Pi

7 |12 t; 7 -
‘%H +Ui< qﬁ) —m > (251)

(2

1

S

~+

1

and
9E;
Bei .
< OB, >N1XNZXPZ—>NZ
opi
t; t t
: _z, s 2 , € i =y 2 . 252
((5):(&) e p)mel) e
The first two of these mappings are compatible with the groupoids
VijXfijXﬂijZNjXNjXPjﬁNiXNZ‘XPZ‘ (253)
and

The third is compatible with the groupoids
Vijxﬁijxmj:ijijPjHNixNixPi (255)

and

vi]‘ : Nj — Ni . (256)
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Compatibilities are established by

_ OE; OE, t; _ t
Uz‘j((at; 2% )(Vji(q-»li>,1/ﬁ<é/>>,ﬂj¢(€i pi )>
_ U, t; oU; t;
= (8 (5 )0 % (o (5))
¢ au; ti
¢ (5 )

. . t; t
t

and

e ti t t
Vij OE, <ij‘( S >,ij‘< = >,7Tji( € Pi )) Vijaj’/ji< % >
28, i q q;

An absolute version of the differential is represented by mappings

E . = =
%:ai—lo(%ffz %?)o(yixﬁixm):NxNxPHS, (260)
m K2 K2
OE — __\ ( oB oE _ — -
Py = 0 O(at; alji/)o(yixyixm):NxNxPHS, (261)
and
OF

oB; _ _
—=v"o| f§ |o(wx7ixm): NxNxP—N. (262)
ap opi
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Alternative definitions

OF , _ou —
oF OL
oF . p) =alp) ~ g5 (wa’) €S, (264
and O
%(m7x’7p) =a*(a’)eN (265)

are possible.
There is a family of projections

Vit Ny X Ny x P, — N; xR x P;

(3]t m)((5) e m)e om

The mapping
Y:NxNxP—NxRxP:(z,2,p)— (z,7(2'),p) (267)

is the corresponding abstract version. Each function F; gives rise to a family
(E;, ;) of functions defined on fibres of the projection ¢; and the function F is a
family of functions on fibres of the projection ¥. The set

. /
OT(Eu’l/)l)_{<< Z—Z* )’< gjl >?( € Pi )) GNszzxp“
v (% 58 ) (5 )=o)

123 t!
:{(<@L)’(q">7(et pi))ENixNixpi;

7
m:m;}@w

is the critical set of the family (E;, ;). The definition of this set is compatible
with the groupoids

mi; Py — P (269)
and
Ui Nj — N; (270)
since
pPj = PiXij + muj; - (271)
from
( € Py ) = (( € Pi )Olifij +( — ||17ij||2 muj; - ))a;l (272)
and
q’]{ . . tj;-/ .
m7 = muj; + m7Aij (273)

7 4



38 F. Barone et al. Qual. Th.Dyn.Syst.

th t
J — i
( 7 ) ( iU + Njidy ) ' (274)
The set

Cr(E,¢) = (1/4_1 X Pi_l X 7TZ-_1) (C’I”(Eiﬂ/}i))

K3

from

= { (z,2',p) € N x N X P; Vy . if 7(62") =0,

oF
then <aml(x,x’,p),6x’> = O} (275)

is the critical set of the family (F, ).
The critical set Cr(E;, ;) is the image of the section

piZNiXRXPi%NiXNiXPZ‘

((5) i m)=((5) (e ) e 1)

of the fibration 1;. We are denoting by p; the vector h; *(p;) € Q;. The function

7

1 2 ti
= <2m [Pl +Uz( i > el) N (277)

interpreted as fhe family (H;, (;) of functions defined on fibres of the projection
CiZNiXR+XPi—>NiXH

()2 )= ()10 m) o

is the Hamiltonian family.
It follows from

t;
H; (Vji< o >7)\i,7sz‘( e P ))
qi
1 . 9 t; o m. ., 2
= (2m [PiAij +mij; - ||~ + Uj (ij' ( 7 )) — e +Pitiy; — 5 [0 >/\1-
1 t,
= (2m Ipill* + U ( 7 ) _ei) i
=H; (( ? )7)\1';( € Pi )) (279)

that the functions H; are compatible with the groupoid

H'L:EZOpZNZXR+X‘RL_)R <<Zj>7)\z»(el Pi ))

I/in1R+XﬁijZNjXR+XPj—>NiXR+XPi. (280)
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The function

H:NxRy xP—R: (z,\p)— Hi(v(z),t',m(p)) (281)
defines the Hamiltonian family (H, () of functions on fibres of the projection
(:NxRy xP—-NxP: (z,\p)+— (z,p). (282)

The passage from the Lagrangian to the Hamiltonian family is the Legendre
transformation.

5.7. Hamiltonian formulation of mechanics
The set

DZ:{<(21»>7(61 pl)a(gzv>7(efb p2)>€N7'XPZXN7‘XP'L’
i i

1 2 t; . 1
=g DI+ U ()t 0, =

t; t;
(e p;»)ai:< 85»(@) %U(q))t} (283)

represents the dynamics reformulated in Hamiltonian terms. It is derived from
variational equalities

(e ((5 ) e mo) (5 ) 2t 00) ) (5)

—— (e p)a( g ) e

Ui
Be, ( q. >7>\ia( € DPi )) t/
( 2—2)7)\1'7(61 Pi )) '
and
0

O\ (( q: )Wﬁ( € Pi )) oA =0 (286)

to be satisfied for arbitrary variations
( gg_, ) (e opi ). O\ (287)

and some value of the parameter ;.
The frame independent version of dynamics is the set

D= {(a@p,x’,p’) ENXPxXxNXP; 7(x')>0, Irso,

0H OH 0H

@ (@) = 50 ) ale) = -5 ), G @A) =0} (285)
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derived from the equalities

<8af(£’ A’p)’(s”“"> = —(p,00)’ = ~(a(p'), 6z). (289)
<5p’ g(m’A’p)> = (op, ')’ = (a(6p). '), (290)
and
OH
Sy (BAP)OA=0. (291)

to be satisfied for arbitrary variations dx, dp, 0\ and some value of the parameter \.
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