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We present here a set of lecture notes on exact fluctuation relations. We prove the
Jarzynski equality and the Crooks fluctuation theorem, two paradigmatic examples of
classical fluctuation relations. Finally, we consider their quantum versions, and analyze
analogies and differences with the classical case.
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0. Introduction

We present here the notes of three lectures given by one of us at the “Fifth
International Workshop on Mathematical Foundations of Quantum Mechanics and
its applications” held in February 2017 in Madrid at the Instituto de Ciencias
Matemáticas (ICMAT).

We will consider some results about fluctuation theorems both for classical and
for quantum systems, a research topic that recently has attracted a great deal
of attention. The statistical mechanics of classical and quantum systems driven
far from equilibrium has witnessed quite recently a sudden development with the
discovery of various exact fluctuation theorems which connect equilibrium thermo-
dynamic quantities to non-equilibrium ones. There are excellent reviews on this
topic, which cover both classical [1] and quantum fluctuation relations [2, 3]. Here,
we will follow more closely the exposition by Campisi, Hänggi and Talkner [3], to
which we refer the reader for further information.

In the first lecture, we will recall the derivation of Einstein’s fluctuation-
dissipation relation for a Brownian particle, which is the inception of classical fluc-
tuation relations. Moreover, we will identify the fundamental ingredients which are
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already present in this early derivation. Then, we will consider the Green–Kubo
formula, which represents the first general approach to quantum fluctuation-
dissipation relations. The link between the correlation function of a quantum system
and its linear response function will be shown and the classical limit of the Green–
Kubo formula will be considered.

The second lecture is devoted to exact classical fluctuation relations. In par-
ticular, we will give explicit deductions of the Jarzynski equality and the Crooks
fluctuation theorem, two paradigmatic examples of classical fluctuation theorems.
In the proofs, two ingredients will be crucial: reversibility at the microscopic level
and the Gibbs probability distribution on the initial conditions of the system.

Finally, in the third lecture, we will consider the quantum case. After intro-
ducing the operational definition of measurement of work as a two-time energy
measurement, and properly defining microreversibility for time-dependent unitary
evolution, we prove both the Jarzynski equality and the Crooks fluctuation theorem
for a quantum system.

1. Lecture 1: Fluctuation-dissipation Relations

We start with some classical results about fluctuation-dissipation relations.
At the microscopic level matter is in a permanent state of agitation and under-

goes thermal and quantum fluctuations. Statistical Mechanics is able to provide
explanations and quantitative results on those fluctuating quantities.

A paradigmatic example is a rarefied gas at thermal equilibrium, which is classi-
cally described by the Maxwell–Boltzmann distribution of velocities. This distribu-
tion is derived under the assumption that the classical dynamics of the microscopic
constituents is Hamiltonian, and that the atoms of the gas interact via negligi-
ble short-range forces. Moreover, the Maxwell–Boltzmann distribution describes a
situation of thermal equilibrium.

What happens to other fluctuating quantities?
In this lecture, we will be mainly interested in the work exchanged during out-

of-equilibrium transformations and its fluctuations. In this analysis, a crucial role
will be played by two ingredients:

• the initial state of a physical system is a thermal state, and, as such, is described
by the Gibbs canonical distribution:

ρβ =
e−βH0

Z0
, (1)

where β−1 ∝ T is the temperature at equilibrium, H0 is the Hamiltonian at the
initial time, and Z0 is the partition function;

• the dynamics is reversible at the microscopic level.

The first hypothesis is of statistical nature, because we are assuming a well-defined
initial probability distribution on the initial state. On the other hand, the second
one is only stating the Hamiltonian nature of microscopic dynamics.
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Next, we would like to understand what happens after forcing the system out
of equilibrium, not necessarily in an adiabatic way.

1.1. Einstein’s relation

The history of fluctuation relations can be traced back to the work of Einstein [5].
In 1905, he proved that the linear response of a system in thermal equilibrium,
driven out of equilibrium by an external force, is determined by the fluctuation
properties at equilibrium.

Einstein considers the case of a Brownian particle in a fluid (see Fig. 1) and
determines a relation between the mobility µ and the diffusion constant D:

µ =
D

kBT
, (2)

where kB is the Boltzmann constant and T is the absolute temperature of the fluid
at equilibrium. We recall that in a dissipative fluid, the mobility represents the ratio
of the suspended particle’s terminal drift velocity vd to an applied force F :

µ =
vd

F
, (3)

It is apparent from Eq. (2) that Einstein’s relation links a non-equilibrium quantity,
say µ, related to the force that drags the system out of its initial state, with the
temperature T of the gas at equilibrium.

We briefly recall the derivation of Einstein’s relation. Suppose the force F is
conservative, say F (x) = −∇U(x), where U : R

3 → R is a smooth potential. Then,
the drift velocity at x reads

vd(x) = µ(x)F (x) = −µ(x)∇U(x). (4)

Fig. 1. Evidence of Brownian motion as depicted for the first time by Jean Perrin in 1908 [4].
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Moreover, assume that the concentration is at equilibrium and thus is determined
by the Maxwell–Boltzmann statistics,

ρ(x) = Ae−
U(x)
kB T , (5)

where A is a normalization constant. The current density due to drift reads

Jdrift(x) = ρ(x)vd(x) = −ρ(x)µ(x)∇U(x). (6)

There is a second contribution to the current density which is due to diffusion and,
according to Fick’s law, is proportional to the gradient of the concentration:

Jdiffusion(x) = −D(x)∇ρ(x). (7)

At equilibrium there is a balance between these currents, namely

Jdrift(x) + Jdiffusion(x) = 0. (8)

By deriving (5), we obtain

∇ρ(x) = −∇U(x)
kBT

ρ(x) (9)

and plugging it in the balance equation (8), we get

−ρ(x)∇U(x)
[
µ(x) − D(x)

kBT

]
= 0, (10)

and Einstein’s fluctuation-dissipation relation (2) follows. It is evident from the
above derivation that (2) is an approximate relation, since Fick’s law (7) is only
valid in the linear regime.

Einstein’s relation was the first of a series of fluctuation-dissipation relations,
which predict the behavior of systems that obey the detailed balance principle and
are weakly perturbed from thermal equilibrium: thermal fluctuations of a physi-
cal observable are related to the linear response, quantified by the admittance or
impedance of the same physical observable. The key idea is that the response of
a system, which is at thermodynamic equilibrium, to a small applied force is the
same as the response to statistical fluctuations at equilibrium.

A second example of a fluctuation-dissipation relation was provided by the
Johnson–Nyquist noise [6, 7]. This phenomenon is due to the thermal agitation
of electrons in a conductor at equilibrium. The overall effect is an electrical ther-
mal noise which can be measured and appears as a difference voltage acting at the
extrema of an isolated resistor. This time-dependent voltage, known as noise volt-
age, depends on the conductor’s temperature and its mean square value is given
by

〈V 2〉 = 4R∆νkBT, (11)

where R is the resistance and ∆ν is the bandwidth of the observed frequencies.
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1.2. Green–Kubo relations

Let us now quickly review the general framework of the fluctuation-dissipation rela-
tions provided in a quantum-mechanical setting by the Green–Kubo relations [8, 9].

Consider an isolated quantum system, whose Hamiltonian operator is H0, which
is a self-adjoint operator on a Hilbert space H. Suppose that the system is at thermal
equilibrium at temperature T , say

ρβ =
e−βH0

Z0
, (12)

where β = 1/kBT , and Z0 = Tr(e−βH0) is the partition function. Assume that
the system is perturbed by an external time-dependent force, so that the total
Hamiltonian reads

H(Λt) = H0 − ΛtQ, (13)

where t ∈ [0, τ ] �→ Λt ∈ R, with τ > 0, and Q = Q† is the observable coupled to
the force Λt. For simplicity, we shall assume that Q is bounded.

The motion of the system is perturbed by the force Λ, but the perturbation is
small if the force is weak. We will confine ourselves to weak perturbations and look
at the response of the system in the linear approximation. The response is observed
through the average change ∆B(t) of a bounded observable B. It is not difficult to
prove [9] that at the first order in Λ,

∆B(t) := Tr(Bρt) − Tr(Bρβ) =
∫ t

0

ΦBQ(t− s)Λsds, (14)

where ρt denotes the evolution at time t of ρβ under the action of the perturbed
Hamiltonian (13). The kernel ΦBQ is the so called response function and is given
by

ΦBQ(t) =
〈[Q,B(t)]〉β

i�
, (15)

where [A,B] = AB −BA is the commutator,

B(t) = eiH0t/�Be−iH0t/� (t ∈ R) (16)

is the (unperturbed) evolution of the observable B, and 〈A〉β = tr(Aρβ) is the
thermal expectation value.

The second ingredient is the correlation function ΨBQ:

ΨBQ(t) =
〈{Q,B(t)}〉β

2
, (17)

where {A,B} = AB +BA is the anticommutator.
The quantum fluctuation-dissipation theorem [10] links the above two functions,

that is

Ψ̂BQ(ω) =
�ω

2
coth

(
β�ω

2

)
Φ̂BQ(ω), (18)
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where f̂ denotes the Fourier transform of the function f ,

f̂(ω) =
∫

R

e−iωtf(t)dt. (19)

Notice that the classical limit, � → 0, of the quantum fluctuation-dissipation theo-
rem reads

Ψ̂(ω) = βΦ̂(ω), (20)

since coth(x) ∼ 1/x as x → 0. The classical limit is in accordance with Einstein’s
relation (2). The Green–Kubo relations started a new trend of research on higher
order fluctuation-dissipation relations beyond the linear regime [11–13].

2. Lecture 2: Classical Fluctuation Relations

In this section, we are going to deduce the so-called Jarzynksi equality [13] and
the Crooks fluctuation theorem [14], which are two paradigmatic examples of exact
classical fluctuation theorems.

Consider a fluctuating quantity x (for example the number of transported elec-
trons in a resistance, or the heat, or the work in non-equilibrium transformations)
and call pF (x) (the subscript F stands for forward) the probability density func-
tion of x during a non-equilibrium thermodynamic transformation; call pB(x) the
probability density function of the same quantity x but under the backward trans-
formation (the subscript B stands for backward). Then, due to microreversibility,
fluctuation relations are usually expressed as a link between pF (x) and pB(x) of
the form

pF (x) = eβ(x−a)pB(−x), (21)

where a is a quantity related to the equilibrium starting points of the forward and
backward processes.

Equation (21) relates non-equilibrium quantities, say the probability distribu-
tions of x for the forward and backward processes, to equilibrium quantities, say
the constants β and a. Thus, microreversibility implies that at the macroscopic
level, the forward probability is exponentially more likely than the backward one.
For example it could happen that the entropy of a small isolated system might
spontaneously decrease, e.g. the water in a glass could spontaneously freeze at
room temperature. However, relation (21) maintains that this process is extremely
highly unprobable.

As already discussed in Lecture 1, in the analysis of classical fluctuation relations
two ingredients are fundamental:

• reversibility at microscopic scales;
• initial condition at thermal equilibrium.
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We would like to analyze the work fluctuations for a classical non-autonomous
system and deduce, as a consequence, the corresponding exact fluctuation relation.
Consider a classical system described by the Hamiltonian function

H(z, λ) = H0(z) − λQ(z), (22)

where z = (q, p) is a point in the phase space Γ of the physical system, H0 is
the unperturbed Hamiltonian function, and λ is a real parameter representing the
external force coupled to the conjugate variable Q(z). We assume that both H0 and
Q are smooth functions on Γ.

The Gibbs canonical state at temperature β−1 associated to the Hamilto-
nian (22) is

ρλ
β(z) =

e−βH(z,λ)

Z(λ)
=

e−β(H0(z)−λQ(z))

Z(λ)
, (23)

Z(λ) =
∫

Γ

e−βH(z,λ)dz, z ∈ Γ, λ ∈ R. (24)

The logarithm of the partition function is related to the Helmholtz free energy F
by [15]

F (λ) = −β−1 lnZ(λ). (25)

Note that for an unbounded phase space, such as Γ = R
2d, the canonical state (23)

is a well-defined probability density if H(z, λ) is confining, that is, for all λ ∈ R,
H(z, λ) → +∞ (sufficiently fast) as |z| → ∞.

Next, consider the time reversal transformation on the phase space Γ:

θ : Γ → Γ, (q, p) �→ (q,−p). (26)

We assume that:

(1) the unperturbed Hamiltonian H0 is invariant under time-reversal transforma-
tions, say H0(θ(z)) = H0(q,−p) = H0(z) for every point z = (q, p) in phase
space Γ;

(2) the conjugate variable Q has a definite behavior under time-reversal transfor-
mations, say Q(θ(z)) = ηQQ(z), with ηQ = ±1. (For example if Q(q, p) = q1,
then ηQ = 1, while if Q(q, p) = q1p2 − p2q1, then ηQ = −1).

As a consequence, we get that

H(θ(z), λ) = H(z, ηQλ), (27)

for all z ∈ Γ and λ ∈ R. Indeed,

H(θ(z), λ) = H0(θ(z)) − λQ(θ(z)) = H0(z) − ληQQ(z) = H(z, ηQλ). (28)

In fact, condition (27) is equivalent to the assumptions on H0 and Q, as the reader
can easily prove.

Suppose now that a given force protocol, assumed to be smooth,

t ∈ [0, τ ] �→ Λt ∈ R (29)
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is assigned to the external force λ in (22), so that the Hamilton function H(z,Λt)
is time-dependent and the overall quantity −ΛtQ(z) is the time-dependent pertur-
bation term.

Our intention is to implement a time-reversed protocol, since it is evidently
impossible to turn back the physical time (a procedure that could be implemented
on a computer simulation). Nevertheless, we need a way to implement a backward
protocol in real time in order to deduce classical fluctuation relations.

We define the backward protocol as

Λ̃ : [0, τ ] → R, Λ̃t := ηQΛτ−t. (30)

In this way, modulo a sign ηQ related to the time-reversal parity of Q, the external
force traces back its evolution from Λ̃0 = ηQΛτ to Λ̃τ = ηQΛ0.

We will denote by ϕt,0[z0; Λ] the solution, assumed to exist and to be unique,
of the Hamilton equations at time t under the external protocol Λ,{

q̇(t) = ∇pH(z(t),Λt),

ṗ(t) = −∇qH(z(t),Λt),
(31)

with initial conditions z(0) = z0 = (q0, p0), so that

z ∈ Γ �→ ϕt,0[z; Λ] ∈ Γ (32)

is the Hamiltonian flow in [0, t] under the protocol Λ.
It is an instructive exercise on the use of Hamilton equations to prove that

under the microreversibility assumption (27), the flow generated by the backward
protocol Λ̃ and the forward flow are related as follows [16]:

ϕt,0[z0; Λ] = θ(ϕτ−t,0[θ(z(τ)); Λ̃]), z(τ) = ϕτ,0[z0; Λ]. (33)

Note that θ(z(τ)) is the initial position under the backward protocol Λ̃. The lazy
reader can convince himself of the validity of (33) by carefully looking at Fig. 2.

Γ

z0

q

p
z(τ )

ϕt,0[z0; Λ]

θ(z(τ ))

θ(z0) ϕτ−t,0[θ(z(τ )); Λ̃]

Fig. 2. Microreversibility [3]. The initial point z0 at time t = 0 gets dragged under the protocol
Λ along the trajectory ϕt,0[z0; Λ], until it reaches its final position z(τ) at time t = τ . Plotted in
red is the trajectory under the backward protocol Λ̃. It starts at t = 0 in θ(z(τ)), evolves along
ϕτ−t,0[θ(z(τ)); Λ̃] until time t = τ , at θ(z0).
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The second ingredient is the initial state and its nature is statistical: we assume
that the initial conditions z0 of the system are randomly sampled from the Gibbs
canonical distribution (23) at t = 0,

ρΛ0
β (z) =

e−βH(z,Λ0)

Z(Λ0)
. (34)

Then, we let the system evolve under the protocol Λ until time t = τ .
Since the dynamics is Hamiltonian, the work W [z0; Λ] done by the external

protocol on the system is given by the difference between its final and its initial
energy, namely

W [z0; Λ] = H(z(τ),Λτ ) −H(z0,Λ0), (35)

where z(τ) = ϕτ,0[z0; Λ]. Clearly, W [z0; Λ] depends on both the initial conditions
z0 and the protocol Λ.

The work can be written as

W [z0; Λ] = −
∫ τ

0

Λ̇tQ(z(t))dt, (36)

where Λ̇t = d
dtΛt. Indeed, we get

W [z0; Λ] = H(z(τ),Λτ ) −H(z0,Λ0) =
∫ τ

0

d
dt
H(z(t),Λt)dt, (37)

where z(t) = ϕt,0[z0; Λ]. Next, we expand the total derivative of H(z(t),Λt):

d
dt
H(z(t),Λt) = ∇zH(z(t),Λt) · ż(t) +

∂

∂λ
H(z(t),Λt)Λ̇t (38)

=
∂

∂λ
H(z(t),Λt)Λ̇t = −Q(z(t))Λ̇t. (39)

In the second equality, we used the orthogonality condition between the gradient
of the Hamiltonian and the velocity vector field,

∇zH(z(t),Λt) · ż(t) = ∇qH(z(t),Λt) · q̇(t) + ∇pH(z(t),Λt) · ṗ(t)

= ∇qH(z(t),Λt) · ∇pH(z(t),Λt)

−∇pH(z(t),Λt) · ∇qH(z(t),Λt)

= 0, (40)

which is a direct consequence of Hamilton equations (31). Thus, we have proved
Eq. (36). So far, we have only made use of Hamiltonian dynamics.

2.1. Jarzynski equality

We want to compute the average of e−βW [z0;Λ] over all the possible initial conditions
drawn from the canonical distribution (34):

〈e−βW 〉Λ :=
∫

Γ

e−βW [z0;Λ]ρΛ0
β (z0)dz0. (41)
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The Jarzynski equality states that

〈e−βW 〉Λ = e−β(F (Λτ )−F (Λ0)), (42)

where F is the Helmoltz free energy (25)
This is a fluctuation relation since it connects a non-equilibrium quantity (on

the left-hand side) with an equilibrium one (on the right-hand side). The right-
hand side is an equilibrium quantity since it depends solely on the initial and final
equilibrium states. Note however that (42) is exact: it holds no matter how strong
is the external force Λ and how far from the initial equilibrium ρΛ0

β the system is
driven by Λ.

Let us consider the average (41) and let us perform some simple computations:

〈e−βW 〉Λ =
∫

Γ

e−βW [z0;Λ]ρΛ0
β (z0)dz0

=
1

Z(Λ0)

∫
Γ

e−β(H(z(τ),Λτ )−H(z0,Λ0))e−βH(z0,Λ0)dz0,

=
1

Z(Λ0)

∫
Γ

e−βH(z(τ),Λτ )dz0. (43)

By the Liouville’s theorem, the Hamiltonian flow ϕτ,0[ · ; Λ] is a canonical trans-
formation on the phase space Γ, and thus is volume preserving and has unit Jacobian
determinant:

z = z(τ) = ϕτ,0[z0; Λ],
∣∣∣∣ ∂z∂z0

∣∣∣∣ = 1. (44)

Therefore, the integration over the initial points z0 in (43) can be traded for an
integration over the final points z, namely

1
Z(Λ0)

∫
Γ

e−βH(z(τ),Λτ )dz0 =
1

Z(Λ0)

∫
Γ

e−βH(z,Λτ )dz
(24)
=

Z(Λτ )
Z(Λ0)

. (45)

Thus, we get

〈e−βW 〉Λ =
Z(Λτ )
Z(Λ0)

, (46)

which gives the Jarzynski equality by using the definition of the Helmholtz free
energy (25).

A straightforward consequence of (42) follows from the convexity of the expo-
nential function, see Fig. 3. By Jensen’s inequality, we get

e−β(F (Λτ )−F (Λ0)) = 〈e−βW 〉Λ ≥ e−β〈W 〉Λ . (47)

Therefore, one has

〈W 〉Λ ≥ F (Λτ ) − F (Λ0) =: ∆F, (48)
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a bx

ex

e x
ea

eb

Fig. 3. Given two points a, b and denoting the average with 〈x〉 = (a + b)/2, from the convexity

of the exponential function it follows that 〈ex〉 ≥ e〈x〉, where 〈ex〉 = (ea + eb)/2 is the average of
the exponential function over the points a and b.

which is an expression of the second law of thermodynamics. Indeed, if one defines
the dissipated work as [15]

Wdiss = W − ∆F, (49)

then inequality (48) states that the dissipated work on average can only be
absorbed:

〈Wdiss〉Λ = 〈W 〉Λ − ∆F ≥ 0. (50)

In other words, the dissipated work done on a system initially at thermal equilibrium
is always non-negative, independently of the protocol Λ.

2.2. Crooks fluctuation theorem

Next, we will consider the Crooks fluctuation theorem and deduce from it the
Jarzynski equality. In order to do so, we need to introduce probability density
functions and make use of the microreversibility assumption (27).

The probability density function (from now on PdF) of the work under the
protocol Λ is given by

p[w; Λ] = 〈δ(w −W )〉Λ, (51)

where the average is over the initial Gibbs ensemble ρΛ0
β in (34), namely

p[w; Λ] =
∫

Γ

e−βH(z0,Λ0)

Z(Λ0)
δ(w −W [z0; Λ])dz0, (52)

and δ is the Dirac measure. From the PdF of the work, one can get the average of
any continuous bounded function f . Indeed,

〈f(W )〉Λ =
∫

Γ

f(W [z0; Λ])
e−βH(z0,Λ0)

Z(Λ0)
dz0

=
∫

Γ

dz0
e−βH(z0,Λ0)

Z(Λ0)

∫
R

dwf(w)δ(w −W [z0; Λ])
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=
∫

R

dwf(w)
∫

Γ

dz0
e−βH(z0,Λ0)

Z(Λ0)
δ(w −W [z0; Λ])

=
∫

R

f(w)p[w; Λ]dw. (53)

Our objective now is to prove the Crooks fluctuation theorem:

p[w; Λ] = eβ(w−∆F )p[−w; Λ̃], (54)

where

∆F = F (Λτ ) − F (Λ0) = − 1
β

ln
(
Z(Λτ )
Z(Λ0)

)
. (55)

The above equality relates the probability of absorbing work under the protocol Λ
to that of releasing work under the backward protocol Λ̃. It is worth noticing that
the ratio between the two probabilities is exponentially large for w > ∆F .

We start with a simple manipulation of the PdF (52):

p[w; Λ] =
∫

Γ

e−βH(z0,Λ0)

Z(Λ0)
δ(w −W [z0; Λ])dz0

=
1

Z(Λ0)
eβw

∫
Γ

e−βH(z(τ),Λτ)δ(w −H(z(τ),Λτ ) +H(z0,Λ0))dz0

=
Z(Λτ )
Z(Λ0)

eβw

∫
Γ

e−βH(z(τ),Λτ )

Z(Λτ )
δ(−w −H(z0,Λ0) +H(z(τ),Λτ ))dz0

= eβ(w−∆F )

∫
Γ

ρΛτ

β (z(τ))δ(−w −H(z0,Λ0) +H(z(τ),Λτ ))dz0, (56)

where we used the definition of work (35) and, in the last equality, the definition
of ρΛτ

β (z) in Eq. (23).
Next, we add the ingredient of microreversibility in order to rewrite the above

integral. We recall the relation between the Hamiltonian flow under the protocol
Λ and the one generated by the backward protocol Λ̃ given in Eq. (33), which is
valid for all t ∈ [0, τ ]. Thus, at time t = 0, we get an alternative way of writing the
initial datum z0:

z0 = ϕ0,0[z0; Λ] = θ(ϕτ,0[θ(z(τ)); Λ̃]). (57)

Using the microreversibility assumption (27), we can rewrite the Hamiltonian at
t = 0 as follows:

H(z0,Λ0) = H(θ(ϕτ,0[θ(z(τ)); Λ̃]),Λ0) = H(ϕτ,0[θ(z(τ)); Λ̃], ηQΛ0)

= H(ϕτ,0[θ(z(τ)); Λ̃], Λ̃τ ), (58)

since Λ̃τ = ηQΛ0. Moreover, the same assumption implies that

H(z(τ),Λτ ) = H(θ(z(τ)), Λ̃0), (59)
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because Λ̃0 = ηQΛτ . We are now ready to plug Eqs. (57)–(59) into Eq. (56) and
the conservation of measure induced by the transformation in Eq. (44), obtaining

p[w; Λ]
eβ(w−∆F )

=
∫

Γ

ρΛτ

β (z(τ))δ(−w −H(z0,Λ0) +H(z(τ),Λτ ))dz0

=
∫

Γ

ρΛτ

β (z(τ))δ(−w −H(ϕτ,0[θ(z(τ)); Λ̃], Λ̃τ ) +H(θ(z(τ)), Λ̃0))dz0

=
∫

Γ

ρΛτ

β (θ(z))δ(−w −H(ϕτ,0[z; Λ̃], Λ̃τ ) +H(z, Λ̃0))dz

=
∫

Γ

ρΛ̃0
β (z)δ(−w −H(ϕτ,0[z; Λ̃], Λ̃τ ) +H(z, Λ̃0))dz

= p[−w; Λ̃], (60)

where in (60), we performed the change of coordinate induced by the time reversal
transformation z = θ(z(τ)) (see Eq. (38)), whose Jacobian has unit determinant,
and we used the relation

ρΛτ

β (θ(z)) =
e−βH(θ(z),Λτ )

Z(Λτ )
=

e−βH(z,ηQΛτ )

Z(ηQΛτ )
= ρ

ηQΛτ

β (z) = ρΛ̃0
β (z). (61)

The Crooks fluctuation relation (54) states that if we consider a positive work
w > ∆F > 0, the probability that the work is injected into the system is larger by
a factor eβ(w−∆F ) than the probability that it might be absorbed under the back-
ward forcing. In other words, energy consuming processes are exponentially more
probable than energy releasing processes. Crooks fluctuation theorem expresses the
second law of thermodynamics at a detailed level which quantifies the relative fre-
quency of energy releasing processes.

Moreover, from the Crooks fluctuation theorem, it is possible to recover the
Jarzynski equality. Indeed, from (53) and (54), one has

〈e−βW 〉Λ =
∫

R

e−βwp[w; Λ]dw

=
∫

R

e−βweβ(w−∆F )p[−w; Λ̃]dw

= e−β∆F

∫
R

p[−w; Λ̃]dw = e−β∆F , (62)

since
∫

R
p[−w; Λ̃]dw = 1.

A final comment is in order. A straightforward corollary of the Crooks fluctu-
ation relation (54) is the following generalization of the Jarzinski equality, whose
proof is left to the reader.

Let B : Γ → R such that B(θ(z)) = ηBB(z), for all z ∈ Γ, with ηB = ±1, then〈
exp
(∫ τ

0

utB(t)dt
)

e−βW

〉
Λ

= e−β∆F

〈
exp
(∫ τ

0

ũtB(t)dt
)〉

Λ̃

, (63)
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for all test functions u : [0, τ ] → R, where ũt := ηBuτ−t, for all t ∈ [0, τ ], is the
backward function. The relation (63) is the generating functional of the fluctuation-
dissipation relations at all order: take the functional derivatives with respect to Λ
and u at Λ = u ≡ 0.

3. Lecture 3: Quantum Fluctuation Relations

In this lecture, we would like to discuss the quantum version of the fluctuation
relations, whose classical version was proved in the previous section.

From the axioms of quantum mechanics [17], the Hamiltonian function on phase
space has to be substituted with a self-adjoint operator. For this reason, we are going
to consider the following Hamiltonian operator on the Hilbert space H:

H(λ) = H0 − λQ, (64)

where H0 and Q are self-adjoint operators, while λ is a real parameter representing
the external force. The canonical Gibbs state is described quantum mechanically
by a density matrix [18]:

ρλ
β =

1
Z(λ)

e−βH(λ), (65)

where

Z(λ) = tr(e−βH(λ)) (66)

is the partition function. The Helmholtz free energy is defined in terms of the
partition function as in the classical case (25).

In the following, we will assume that {H(λ)}λ∈R is a family of (unbounded)
self-adjoint operators on a common domain D. Moreover, we assume that ρλ

β is
trace-class for all λ ∈ R and β > 0. This implies that the Hamiltonians (64) have a
discrete spectrum with finite multiplicity, namely,

H(λ) =
∑
m

Eλ
mΠλ

m, (67)

where {Eλ
m} are the distinct eigenvalues of H(λ) (Eλ

m �= Eλ
n for m �= n), and the

eigenprojections {Πλ
m} are of finite rank, tr(Πλ

m) < +∞ for all m. Moreover, if H
is infinite-dimensional, then Eλ

m → +∞ as m→ +∞.
Assume now that a given protocol t ∈ [0, τ ] �→ Λt ∈ R is assigned to the external

force in (64), so that the Hamiltonian is time-dependent, t �→ H(Λt). The quantum
evolution in the interval [s, t] is described by the Schrödinger equation, which, from
the operator point of view, reads

i
∂

∂t
Ut,s[Λ]ψ = H(Λt)Ut,s[Λ]ψ, Us,s[Λ] = I, (t ≥ s), (68)

for all ψ ∈ D: if the system is initially in the state ψ ∈ D, according to the
Schrödinger equation, it will evolve at time t to the state Ut,s[Λ]ψ ∈ D. Here and in
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the following we set � = 1. Note that one can instead consider the derivative with
respect to the initial time s and get

i
∂

∂s
Ut,s[Λ]ψ = Ut,s[Λ]H(Λs)ψ, Ut,t[Λ] = I, (t ≥ s), (69)

for all ψ ∈ D, which is a final value problem. We will explicitly denote the unique
solution to (68) or to (69) by

Ut,s[Λ] = T exp
(
−i
∫ t

s

H(Λu)du
)

= T exp
(
−i
∫ t

s

(H0 − ΛuQ)du
)
, (70)

where T is the time-ordered product.
In analogy with the classical case (35), let us tentatively define the work as the

difference between the Hamiltonian operator at time t = τ and the Hamiltonian
operator at time t = 0 in the Heisenberg picture:

W [Λ] = U †
τ,0[Λ]H(Λτ )Uτ,0[Λ] −H(Λ0). (71)

In order to get Jarzynski equality, then, one could try to follow step by step the
derivation used for the classical case (see Eq. (43)), but in this case, the cancellation
in Eq. (43) cannot be made. Indeed, in general the Hamiltonians (64) at different
times do not commute, unless H0 commutes with Q:

[H(Λt), H(Λs)] = (Λt − Λs)[H0, Q]. (72)

In fact, it can be shown that with the definition of work given by (71), one has that

〈e−βW 〉Λ := tr(ρΛ0
β e−βW [Λ]) = e−β∆F (73)

if and only if [H(Λt), H(Λs)] = 0 for all t, s ∈ [0, τ ]. The last condition applies
either to the case of a constant protocol, which would imply ∆F = 0 or to the
commutative case [H0, Q] = 0 that is, morally, to a classical situation.

At first look, it may seem that there could be no genuinely quantum counterpart
of the Jarzynski equality. The problem, in fact, relies on the definition (71) of work
under the protocol Λ, and one has to think more deeply about the meaning of work.

It is well known that work characterizes a process rather than a state of the
system, and indeed it depends on the trajectory followed by the system from its
initial to its final state (see Eq. (35)). As such, in quantum mechanics, work cannot
be associated to a self-adjoint operator whose eigenvalues are determined by an
energy measurement at a given time. Instead, in order to determine the exchanged
work, energy must be measured twice, at two instants of time, say at time t = 0
and time t = τ . The difference of the outcomes of these two measurements will
yield the work performed on the system in that particular instance.

This two-time measurements procedure is the operational description of the
measure of work (35) along a single trajectory z0 �→ z(τ), which in the classi-
cal case is a particular instance of all possible trajectories drawn from the initial
thermal state (34). This description can be immediately exported to the quantum
world, where, however, the measurement process will add quantum fluctuations to
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the classical statistical fluctuations due to the choice of a thermal initial state. As
a consequence, the difference of the outcomes of a two-time measurement is differ-
ent from the measurement of the difference between the corresponding measured
operators (71), whose operational meaning is unclear.

Let us look step by step at the two-measurement process:

(1) As in the classical case the system is prepared in the Gibbs state

ρΛ0
β =

e−βH(Λ0)

Z(Λ0)
=

1
Z(Λ0)

∑
n

e−βEΛ0
n ΠΛ0

n . (74)

(2) At time t = 0, the energy of the system is measured and the outcome is, say,
the eigenvalue EΛ0

n for some n, and the state of the system becomes

ρn =
ΠΛ0

n ρΛ0
β ΠΛ0

n

pΛ0
n

, pΛ0
n = tr(ρΛ0

β ΠΛ0
n ), (75)

where pΛ0
n = tr(ρΛ0

β ΠΛ0
n ) is the probability of getting the outcome EΛ0

n .
(3) Then, one lets the system evolve for a time τ , so that its state becomes

ρn(τ) = Uτ,0[Λ]ρnU
†
τ,0[Λ]. (76)

(4) Finally, at time t = τ a second energy measurement is performed and the
outcome EΛτ

m is obtained with probability

pm|n = tr(ΠΛτ
m ρn(τ)), (77)

and the state of the system becomes

ρm,n =
ΠΛτ

m Uτ,0[Λ]ρnU
†
τ,0[Λ]ΠΛτ

m

pm|n

=
ΠΛτ

m Uτ,0[Λ]ΠΛ0
n ρΛ0

β ΠΛ0
n U †

τ,0[Λ]ΠΛτ
m

pm|npn
. (78)

Summarizing, the overall work done on the system in this particular instance is
given by the difference of the final and initial measurement outcomes,

W = EΛτ
m − EΛ0

n , (79)

whose probability is

pm,n = pm|npΛ0
n

= tr(ΠΛτ
m ρn(τ)) tr(ρΛ0

β ΠΛ0
n )

= tr

(
ΠΛτ

m Uτ,0[Λ]
ΠΛ0

n ρΛ0
β ΠΛ0

n

pΛ0
n

U †
τ,0[Λ]

)
pΛ0

n

= tr(U †
τ,0[Λ]ΠΛτ

m Uτ,0[Λ]ΠΛ0
n ρΛ0

β ΠΛ0
n ), (80)
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where, in the last equality, the cyclicity of the trace was used. From Eq. (74), it
follows that

ΠΛ0
n ρΛ0

β ΠΛ0
n =

1
Z(Λ0)

e−βEΛ0
n ΠΛ0

n , (81)

so that the probability of obtaining the outcomes (EΛ0
n , EΛτ

m ), and thus the
state (78), reads

pm,n =
e−βEΛ0

n

Z(Λ0)
tr(U †

τ,0[Λ]ΠΛτ
m Uτ,0[Λ]ΠΛ0

n ). (82)

Now we can compute the average of e−βW over all possible outcomes:

〈e−βW 〉Λ :=
∑
m,n

e−β(EΛτ
m −EΛ0

n )pm,n

=
∑
m,n

e−βEΛτ
m

Z(Λ0)
tr(U †

τ,0[Λ]ΠΛτ
m Uτ,0[Λ]ΠΛ0

n )

=
∑
m

e−βEΛτ
m

Z(Λ0)
tr

(
U †

τ,0[Λ]ΠΛτ
m Uτ,0[Λ]

∑
n

ΠΛ0
n

)

=
∑
m

e−βEΛτ
m

Z(Λ0)
tr(ΠΛτ

m ) =
1

Z(Λ0)
tr

(∑
m

e−βEΛτ
m ΠΛτ

m

)

=
1

Z(Λ0)
tr(e−βH(Λτ )) =

Z(Λτ )
Z(Λ0)

= e−β∆F , (83)

where we used the cyclicity of the trace, the relation

∑
m

tr(ΠΛ0
m A) = tr

(∑
m

ΠΛ0
m A

)
= tr(A), (84)

valid for all trace-class operators A, and the equality

e−βH(Λτ ) =
∑
m

e−βEΛτ
m ΠΛτ

m . (85)

Thus, we have proved the Jarzynski equality (42) for a quantum system.
This equality takes into account the presence of thermal fluctuations of work

due to the Gibbs initial state, as in the classical case, together with its quantum
fluctuations inherent in the two-time measurement process.

3.1. Microreversibility

Let Θ : H → H be the quantum time-reversal (anti-unitary) operator, with
Θ2 = I. We assume that the Hamiltonian is time-reversal invariant, namely that for
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all λ ∈ R:

ΘH(λ)Θ = H(ηQλ), (86)

which is the quantum version of the assumption (27). As in the classical case, ηQ

is the time-reversal parity of the observable Q, namely

ΘQΘ = ηQQ, ηQ = ±1. (87)

From the spectral decomposition (67), one gets that the property (86) implies that

EηQλ
m = Eλ

m, ΘΠλ
mΘ = ΠηQλ

m , (88)

for all m and λ.
We will prove that

Ut,0[Λ] = ΘUτ−t[Λ̃]ΘUτ,0[Λ], (89)

where t ∈ [0, τ ] �→ Λ̃t := ηQΛτ−t is the backward protocol (30). Notice the analogy
with the classical case where

ϕt,0[·; Λ] = θ(ϕτ−t,0[θ(ϕτ,0[·; Λ]); Λ̃]), (90)

see Eq. (33). In order to prove (89), we observe that, from (68), Uτ−t,0[Λ̃] satisfies
the following integral equation on the common domain D:

Uτ−t,0[Λ̃] = I − i
∫ τ−t

0

dsH(Λ̃s)Us,0[Λ̃]

= I − i
∫ τ−t

0

dsH(ηQΛτ−s)Us,0[Λ̃]

= I − i
∫ τ

t

dσH(ηQΛσ)Uτ−σ,0[Λ̃]. (91)

Therefore, by using (86), one has

ΘUτ−t,0[ηQΛ̃]Θ = I + i
∫ τ

t

dσΘH(ηQΛσ)Uτ−σ,0[Λ̃]Θ

= I + i
∫ τ

t

dσH(Λσ)ΘUτ−σ,0[Λ̃]Θ. (92)

On the other hand, from (69), one gets

Uτ,t[Λ] = I − i
∫ τ

t

dσUτ,σ[Λ]H(Λσ) (93)

and thus

U †
τ,t[Λ] = I + i

∫ τ

t

dσH(Λσ)U †
τ,σ[Λ]. (94)

By comparing (92) with (94), we see that the unitaries ΘUτ−t,0[Λ̃]Θ and U †
τ,t[Λ]

satisfy the same integral equation, whence by uniqueness they are equal:

ΘUτ−t,0[Λ̃]Θ = U †
τ,t[Λ] = Ut,0[Λ]U †

τ,0[Λ]. (95)
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Quantum fluctuation relations

3.2. Quantum Crooks fluctuation theorem

The probability pm,n of getting the outcomes (EΛ0
n , EΛτ

m ) in the two-measurement
process of the work done on a quantum system was derived in (82). It follows that
the probability of getting a value w of the work is

P [w; Λ] =
∑
m,n

pm,nδ(w,EΛτ
m − EΛ0

n ), (96)

where δ(x, y) is the Kronecker delta. We want to prove that

P [w; Λ] = eβ(w−∆F )P [−w; Λ̃]. (97)

We first observe that

P [w; Λ] =
∑
m,n

pm,nδ(w,EΛτ
m − EΛ0

n )

=
∑
m,n

e−βEΛ0
n

Z(Λ0)
tr(U †

τ,0[Λ]ΠΛτ
m Uτ,0[Λ]ΠΛ0

n )δ(w,EΛτ
m − EΛ0

n )

=
eβw

Z(Λ0)

∑
m,n

e−βEΛτ
m tr(U †

τ,0[Λ]ΠΛτ
m Uτ,0[Λ]ΠΛ0

n )δ(−w,EΛ0
n − EΛτ

m )

= eβ(w−∆F )
∑
m,n

e−βEΛ̃0
m

Z(Λ̃0)
tr(Uτ,0[Λ]ΠηQΛ̃τ

n U †
τ,0[Λ]ΠηQΛ̃0

m )δ(−w,EΛ̃τ
n − EΛ̃0

m ),

(98)

where we used the definition (30) of the backward protocol Λ̃, and the assump-
tions (88). Then, we use microreversibility, namely (89) for t = 0 and obtain that

U †
τ,0[Λ] = ΘUτ,0[Λ̃]Θ (99)

and

Uτ,0[Λ] = ΘU †
τ,0[Λ̃]Θ, (100)

therefore

P [w; Λ]
eβ(w−∆F )

=
∑
m,n

e−βEΛ̃0
m

Z(Λ̃0)
tr(Uτ,0[Λ]ΠηQΛ̃τ

n U †
τ,0[Λ]ΠηQΛ̃0

m )δ(−w,EΛ̃τ
n − EΛ̃0

m )

=
∑
m,n

e−βEΛ̃0
m

Z(Λ̃0)
tr(ΘU †

τ,0[Λ̃]ΘΠηQΛ̃τ
n ΘUτ,0[Λ̃]ΘΠηQΛ̃0

m )δ(−w,EΛ̃τ
n − EΛ̃0

m )

=
∑
m,n

e−βEΛ̃0
m

Z(Λ̃0)
tr(U †

τ,0[Λ̃]ΠΛ̃τ
n Uτ,0[Λ̃]ΠΛ̃0

m )δ(−w,EΛ̃τ
n − EΛ̃0

m )

= P [−w; Λ̃], (101)

where we used again (88) and Θ2 = I.
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