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Spontaneous emission and lifetime modification caused by an intense electromagnetic field
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We study the temporal evolution of a three-level systenth as an atom or a molecyl@itially prepared
in an excited state, bathed in a laser field tuned at the transition frequency of the other level. The features of
the spontaneous emission are investigated and the lifetime of the initial state is evaluated: a Fermi “golden
rule” still applies, but the on-shell matrix elements depend on the intensity of the laser field. In general, the
lifetime is a decreasing function of the laser intensity. The phenomenon we discuss can be viewed as an
“inverse” quantum Zeno effect and can be analyzed in terms of dressed states.

PACS numbse(s): 42.50.Hz, 42.50.Vk, 03.65.Bz

[. INTRODUCTION the intensity of the laser, the decay candmhancedrather
than hindered. This can be viewed as an “inverse” quantum
The temporal behavior of quantum-mechanical systemgeno effect. An important role in this context will be played
can be strongly influenced by the action of an external agenfY the specific properties of the interaction Hamiltonian, in
A good example is the quantum Zeno effetf2], where the particular by the “form facto_r of the interaction.
quantum-mechanical evolution of a givénot necessarily Other authors have studied physical effects that are re-

: lated to those we shall discuss. The features of the matrix
gnstable state s slowed dowfor even halte_):iby perform- elements of the interaction Hamiltonian were investigated in
ing a series of measurements that ascertain whether the s

TR . . ther e S¥&e context of the guantum Zeno effect by Kofman and Kur-
tem is still in its initial state. This peculiar effect is histori- [13], who also emphasized that different quantum Zeno
cally associated and usually ascribed to yvhat we could call fegimes are present. Plenio, Knight and Thompson discussed
pulsed” quantum-mechanical observation on the systeMe quantum Zeno effect due to “continuous” measurements
However, it can also be obtained by performing a “continu-ang considered several physical systems whose evolution is
ous” observation of the quantum state, e.g., by means of ag,qgified by an external fiel§il4]. There is also work by
intense field 3,4]. ‘Kraus on a similar subjedtL5]. Finally, Zhu, Narducci and
Most experiment that have been performed or proposed ig¢ iy [16] investigated the electromagnetic-induced trans-
order to modify the quantum-mechanical evolution law makeyarency in a context similar to that considered in this paper.
use of oscillating systen{§—9]. On the other hand, itwould |5 some sense, our present investigation “blends” these
be interesting to understand whether and to which extent thgygies. by taking into account the important role played by
evolution law of abona fide “unstable” system can be {he matrix elements of the interaction. This will enable us to
changed. In order to discuss the evolution of genuine Ungiscyss some new features of the evolution that have not
stable systems one usually makes use of the Weisskopfeen considered before. We shall look at this phenomenon
Wigner approximatioh10], that ascribes the main properties from  several perspectives, by first solving the time-
of the decay law to a polg Iogated near the.real axis of th%ependent Schdinger equation, then looking at the spec-
complex energy plane. This yields the Fermi “golden rule” .,y of the emitted photons and finally constructing the
[11]. In this paper we shall investigate the possibility that thedressedFanc) states.
lifetime of an unstable_quantum system can _be_ modified by oy analysis will be performed within the Weisskopf-
the presence of a very intense electromagnetic field. We Sh"’\Wigner approximation and no deviations at shidrtL7,1§
look at the temporal behavior of a three-level systeoth as 54 |ong[19] times will be considered. The features of the
an atom or a moleculewhere level No.1lis the ground state quantum-mechanical evolution are summarized in R2g]
and levels No. 2, No. 3 are two excited statese Fig. 1L and have already been discussed within a quantum field the-

The system is initially prepared in level No. 2 and if it fol- gretical framework[21-24, where several subtle effects
lows its natural evolution, it will decay to level No. 1. The p5ve to be properly taken into account.

decay will be(approximately exponential and characterized

by a certain lifetime, that can be calculated from the Fermi 13>
golden rule. But if one shines on the system an intense lasel
field, tuned at the transition frequency 3-1, the evolution can
be different. This problem was investigated in RE3],
where it was found that the lifetime of the initial state de-
pends on the intensity of the laser field. In the limit of an
extremely intense field, the initial state undergoes a “con-
tinuous observation” and the decay should be considerably
slowed downquantum Zeno effettThe aim of this paper is

to study this effect in more detail and discuss a new phenom-
enon[12]: we shall see that for physically sensible values of FIG. 1. Level configuration.

2>

11>
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This paper is organized as follows. In Sec. Il we introducey,

the three-level system bathed in the laser field. Its tempor
evolution is studied in Sec. Ill. The spectrum of the photon
emitted during the evolution is evaluated in Sec. IV. Sectio

V contains a discussion in terms of dressed states, Sec. VI an
analysis of the influence of additional levels on the lifetime,

and Sec. VII some concluding remarks.

II. PRELIMINARIES AND DEFINITIONS
We consider the Hamiltoniami=c=1) [3]:

H=Ho+ Hin

= wo|2)(2|+Q0|3)(3| + g YN
+§ (bl 1)(2]+ i an|2)(1])

+%(¢kxalx|1><3|+q’:xakh|3><1|)' (1)
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No=|ao|? of ko-photons in volumeV [we will eventually

aéonsider the thermodynamical limit; see E@6)]. In the

icture defined by the unitary operator

+

T(t) =explage' ®ay, —ace '%af, ), (4
the Hamiltonian(1) reads
HO=THT +ITT =H+ (P, af e[ 1)(3|
+dF ) aoe”3)(1)). (5

In this picture, thek, mode is initially in the vacuum state
[25] and by noting that foNy>1

(100 H(D)]3;00)] = VNg @y, |
>[(1; L0 [H(1)[3;00) |

where the first two terms are the free Hamiltonian of the

three-level atonfwhose states$i) (i=1,2,3) have energies
E;=0, wg=E,—E;>0, Qy=E;—E;>0], the third term is
the free Hamiltonian of the EM field and the last two terms
describe the 42 and %- 3 transitions in the rotating wave
approximation, respectivelfsee Fig. 1 States|2) and|3)
are chosen so that no transition between them is possib
(e.g., because of selection rule¥he matrix elements of the
interaction Hamiltonian read

ik-x _*x
€0\ )12

e
=——— | d%e" (X),
¢k)\ \/260wa

)

ik-x _*

Dy = €

'j13(X),

e
—f d3x e”
V2eVo

where— e is the electron charge, the vacuum permittivity,

V the volume of the boxp = K|, €, the photon polarization,
andj; the transition current of the radiating system. For ex-
ample, in the case of an electron in an external field, we hav
Ji= lﬂfTwﬂi where ¢; and ¢; are the wave functions of the
initial and final state, respectively, andl is the vector of

Dirac matrices. For the sake of generality we are using rela?

tivistic matrix elements, but our analysis can also be per
formed with nonrelativistic oneig= f py;/me, wherep/ms
is the electron velocity.

=Dy, (6)
the Hamiltonian(5) becomes
H2w0|2><2|+90|3><3|+% @i Agor
+k§;, (¢k>\al>\|1><2|+¢:>\ak>\|2><1|)
le : .
+ (P a0 € P L)(3[+ D, aoe ™ 3)(1]),
%

where a prime means that the summation does not include
(kg,\o) [due to hypothesi$3)]. In the above equations and
henceforth, the vectdi;n, ) represents a state in which the
atom is in statdi) and the electromagnetic field in a state
with n,, (k,\) photons. We shall analyze the behavior of the
system under the action of a continuous laser beam of high
intensity. Under these conditions, level configurations simi-
lar to that of Fig. 1 give rise to the phenomenon of induced
transparency26|, for laser beams of sufficiently high inten-
sities. Our interest, however, will be focused anstable
'g]itial states: we shall study the temporal behavior of level
No. 2 when the system is shined by a continuous laser of
intensity comparable to those used to obtain induced trans-
arency.

Notice that in Eq.(7) the spontaneous decay-3L has
been neglected with respect to the stimulated transition, be-

cause of the large factofﬁ_o>1 in EqQ.(6). However, since

We shall concentrate our attention on a three-level systerRUr interest is primarily in the first step of this process,

bathed in a continuous laser beam, whose photons have m

mentumky (|ko|=Q() and polarization\,, and assume,

throughout this paper, that
Piegp,= 0 (3)

i.e., the laser does not interact with stg2e. Let the laser be

gamely the decay 21, these smaller, later effectef the
order of 1Ny) do not change our conclusions.
The operator

N=|2><2|+§' ala (8

in a coherent statéxy) with a very large average number satisfies
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[H,N]=0, 9) decay to level No. 1, and it is “continuously observed” by a
continuous laser at the 1-3 frequeni@]: As soon as the
which implies the conservation of the total number of pho-system has decayed to level No. 1, ftietense laser pro-
tons plus the atomic excitatiofTamm-Dancoff approxima- vokes the 1-3 transition.(The irreversibility inherent in the
tion [27]). The Hilbert space splits therefore into sectors thatact of observation is eventually brought in by the spontane-
are invariant under the action of the Hamiltonian: in ourous decay of level No. BThis brings us conceptually closer
case, the system evolves in the subspace labeled by the &b the seminal formulatiofl,2] of quantum Zeno effect.
genvalueN'=1 and the analysis can be restricted to this sec- By Laplace transforming the system of differential equa-
tor [28]. tions (13) and incorporating the initial conditiof14) we get
the algebraic system
I1l. TEMPORAL EVOLUTION

We will study the temporal evolution by solving the time- iSX(S)=woX(S)+ 2" b Yia(s)+i,
dependent Schadinger equation ki
d IS Vi (S) = i X(S) + 0 Y (S) + i Dy \ Zin (), (16
iaW(t)):H(t)W(t)% (10 IS Yia(S) = draX(S) + oy (S) +ag Py Zn(s), (16)
. ~ _ * ~ ~
where the states of the total system in the sesferl read 1S Z0(8) = a0Picy Vi (S) + @iz (),

where

|w<t>>=x<t>|2;0>+§’ Yia(D]1; 1)

- o 1 ~

. f(s)=j dte St (t), f(t)zz_wiJ ds é5f(s), (17)

+2" Zp (e 10 3;1,,) (12) 0 B
k,\

the Bromwich path B being a vertical line Re const in the
and are normalized: half plane of convergence of the Laplace transfofkery
similar equations of motion can be obtained by assuming that
Ol = Ix)2+ S 2L H2=1 the externallasey field is initially in a number statdlo, with
(Ol =Ix(®)] % Yier (0] k§;‘ |2 (0] N, very large[12]. See also the discussion in Sec] Wt.is
straightforward to obtain

(Vt). (12
~ 1
By inserting Eq(11) in Eqg. (10) one obtains the equations of X(8)= 377 0o+ Q(B,3)’ (18
motion
. ~ —id(stiog~
. _ ! * S)= ——X(S ’ 19
X(0)=wox(D+ X" Sy, Val®= g (19
| Vi (1) = paX(t) + oY (1) + af Dy r Zan(t), (13 5 \/W_oq)ffoxoff)kx~
Zi(s)=— mx s), (20
. w
| Zi (1) = @i\ Via (D) + 012 (1), “
with
where a dot denotes time derivative. At tie0 we prepare
our system in the state stiwg
B,s)= 2 — 21
[4(0))=2;0) = x(0)=1, y(0)=0, 24(0)=0, Qe % Bl (s+iw)?+B? 2
(14
. . L and where
which is an eigenstate of the free Hamiltonian
2_ N 2
Hol #(0)) = Ho|2:0)= w|2:0). (15 B7=Nol i 22

Incidentally, we stress that the choice of the initial state igs proportional to the intensity of the laser field and can be
different from that of Ref[5], where the three-level atom is viewed as the “strength” of the observation performed by
initially in the ground statéNo. 1) and a Rabi oscillation to the laser beam on level No.[3]. See the paragraph follow-
level No. 2, provoked by an rf field, is inhibited by a pulsed ing Eg. (15). Note that the couplin@® is related to the Rabi
laser, resonating between levels No. 1 and No. 3, that pefrequency by the simple relatidB= Qg,p,{2.

forms the “observation” of level No. 1. In our case, the In the continuum limit ¥ —«), the matrix elements scale
atom is initially in level No. 2, so that it caspontaneously as follows:
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Vw? s
lim s
V~>w(277)3

S [ d0louP=goni@. @3

where Q) is the solid angle. Thédimensionless function
x(w) and coupling constang have the following general
properties, discussed in Appendix A:

, oI if w<A,
XAOVE) 8 it WA, 24 Spured -1
92:a(wOIA)2j+111’ (25)

wherej is the total angular momentum of the photon emitted
in the 2—1 transition,+ represent electric and magnetic
transitions, respectivelyg(>1) is a constanta the fine I | 1
structure constant andl a natural cutoff(of the order of the

inverse size of the emitting system, e.g., the Bohr radius for
an atom, which determines the range of the atomic or mo- 5 5 ¢yt and pole in the plane @=0) and convergence

lecular form factof29]. . o circle for the expansion o)(s) arounds= —iw,. | and Il are the

In order to scale the quantify, we take the limit of very  first and second Riemann sheets, respectively. The pole is on the
large cavity, by keeping the density 6f, photons in the second Riemann sheet, at a dista@@?) from —iw,.
cavity constant:

N, to —ic, and no singularities on the first Riemann sheet
Voo, Ny—o, with —0_ no=const (26)  (physical shee22]. On the other hand, it has a simple pole
\ on the second Riemann sheet, that is the solution of the equa-

. tion
and obtain from Eq(22)
B?=noV|®y, |*=(2m)%no| ¢y (ko) %, (27) s+iwg+gZwedy(s)=0, (31
= 1/2 3/2 % ;
wheree=®V~4/(21)*“ is the scaled matrix element of the Where

1-3 transition. As we shall see, in order to affect significantly

the lifetime of level No. 2, we shall need a high valueByf ,

namely, a laser beam of high intensity. It is therefore inter- qu(s)=q(se *™)=q(s)+2mx(is) (32)
esting to consider a 1-3 transition of the dipole type, in

which case the above formula reads is the determination of|(s) on the second Riemann sheet.

B?=2malql€, - Xud2No, (28) We note .tha'gzq(s) is O(g?), so that the pole can be found
0o perturbatively: by expanding;(s) around—iw, we get a

power series, whose radius of convergenc®is w, be-
cause of the branch point at the origin. The circle of conver-
gence lies half on the first Riemann sheet and half on the
second sheetFig. 2). The pole is well inside the conver-

Let us first look at the cas®=0. The laser is off and we gence circle, becauéepo|e+iw0|~gzwo< R., and we can
expect to recover the well-known physics of the spontaneousrite
emission a two-level system prepared in an excited state and
coupled to the vacuum of the radiation field. In this case,
Q(0,s) is nothing but the self-energy function

wherex, 3 is the dipole matrix element.

A. Laser off

Spole™ —iw0—92w0q||(—iw0—0+)+0(g4)

1 :_iwo_gzﬁ)oq(_iw0+0+)+o(g4), (33)

AH=Q(09) =2 [hal’577,- (29
’ K becausey(s) is the analytic continuation af(s) below the
which becomes, in the continuum limit branch cut. By using the formula
2
: » . X(w)
s)=g? s)=—ig? jd — 30 , L
Q(s)=g“woa(s) 9 wo 0 % w—is (30) li 0+xii8 —P;+|775(X), (34)

wherey is defined in Eq(23). The functionx(s) in Eq. (18)
(with B=0) has a logarithmic branch cut, extending from 0one gets from Eq(30)
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(a) s (b) _ s
+iB

FIG. 3. Cuts and pole in the
s-plane B#0) and convergence
circle for the expansion d®(B,s)
arounds= —iwq. |, I, and Il are
the first, second, and third Rie-
mann sheets, respectivelya) B
<wq. (b) B>wq. In both cases,
the pole is at a distanc®(g?)
from —iw,.

Q(s) in absence of laser fieldEq. (29)], by making use of

o 1
q(—inp+0")= —if do Y3 (0)————— the following remarkable property:
0 o—n—i0"
1
o 1 Q(B,s)= - -
=7TX2(77)0(77)—i pf deZ(w)w_77 )= E |¢k*| Stiwt+iB s+|wk—|B
0 _
1
(39 = 5[Q(s+iB)+Q(s~iB)]. (39

and by setting
Notice, incidentally, that in the continuum limi¥/(— ), due

to the above formulaQ(B,s) scales just aQ(s). The posi-

Spole= ~1woHIAE— 2 (36) tion of the polesy,e (and as a consequence the lifetime
=y 1=-1/2 Res,q0 depends on the value & There are
one obtains now two branch cuts in the complesplane, due to the two
terms in EqQ.(39). They lie over the imaginary axis, along
y=27mg%wox*(wo) +O(g*), (—i»,—iB] and (=i, +iB].

The pole satisfies the equation

- 2
AE=gugP| dwc’j_(“;2+0<g4>, 37) S+iwo+Q(B,9)=0, (40)

where Q(B,s) is of orderg?, as before, and can again be
expanded in power series arousd —iwg, in order to find

the pole perturbatively. However, this time one has to choose
the right determination of the functio(B,s). Two cases
are mathematically possibléa) The branch point-iB is

which are the Fermi “golden rule” and the second order
correction to the energy of level No. 2.

The Weisskopf-Wigner approximati¢t0] consists in ne-
glecting all branch cut contributions and approximating the
self-energy function with a constafits value in the polg

that is situated above-iwg, so that—iw, lies on both cuts, see
Fig. 3(a); (b) the branch point-iB is situated below-i wg,
_ 1 1 1 so that—iwq lies only on the upper branch cut, see Fih)3
X(s)= We notice that, although mathematically conceivable, the lat-

stiwg+Q(s) B S'HwO'FQII(SpoIQ S_Spole,

(39) ter case B> wg) cannot be tackled within our approxima-

tions, for a number of additional effects would then have to
be considered: multiphoton processes would take place, the
other atomic levels would start to play an important role and
our approaclithree-level atom in the rotating wave approxi-
fnation would no longer be valid. We therefore restrict our
attention to values oB that are high(of the same order of
magnitude as those utilized in electromagnetic induced trans-
parency, but not extremely high, so that our starting ap-
proximations still apply.

We turn now our attention to the situation with the laser In case(a), i.e., for B<wg, the pole is on the third Rie-
switched on B#0) and tuned at the 1-3 transition frequency mann sheetunder both cugsand the power series converges
Q. The self energy functio®(B,s) in Eqg. (21) depends on in a circle lying half on the first and half on the third Rie-

B and can be written in terms of the self energy functionmann sheet, within a convergence radiis= wy— B, which

where in the last equality we used the pole equati®b.
This yields a purely exponential behaviet) = exp&yg),
without short-time(and long-timg corrections. As is well
known, the latter are all contained in the neglected branc
cut contribution.

B. Laser on
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v(B)/~v v(B) /v v(B)/v
2 4 14
12
1.5 3 10 FIG. 4. The decay rate/(B)
8 vs B, for electric transitions with
1 2 i=1,2,3; y(B) is in unitsy andB
6 in units wy. Notice the different
0.5 1 4 scales on the vertical axis.
B/wo B/LUO 2 B/wo
0.20.40.60.8 1 0.20.40.60.8 1 0.20.40.60.8 1
j=1 i=2 j=3

decreases aB increaseqdFig. 3a)]. For the sake of com-
pleteness we also notice that in cdbg i.e., forB> w, the
pole would be on the second Riemann sHaater the upper

B, in terms of the “ordinary” lifetimey ™%, when there is no
laser field. By taking into account the general behayas
of the matrix elementg?(w) and substituting into Eq44),

cut only) and the power series would converge in a circleone gets tdD(g?)
lying half on the first and half on the second Riemann sheet,

within a convergence radiuR.=B— w,, which increases
with B [Fig. 3(b)].

In either cases we can write, fdlspo|e+iwo|<Rc=
|B—awql,

1
Spole:_iwo_E{Q[_i(a’0+8)+0+]
+Q[~i(wo—B)+0"]}+0(g"
BT |
=~lwo~ 59 wofd[ —i(wo+B)+07]

+d[—i(we—B)+0*]}+0(g*. (41)

B 2jF1
(l—l——) +
Wo

Y
Y(B)—E oo

B 2jF1
1- —) e(wo—B)}

(B<A), (45

where = refers to 1-2 transitions of electric and magnetic
type, respectively. Observe that, sinke- inverse Bohr ra-
dius, only the casB<wy<<A is the physically relevant one
[12]. The decay rate is profoundly modified by the presence
of the laser field. Its behavior is shown in Fig. 4 for a few
values ofj. In general, forj>1 (1-2 transitions of electric
guadrupole, magnetic dipole or highethe decay rate/(B)
increases withB, so that the lifetimey(B) ~* decreases &8

is increased. If one looks & as the strength of the “obser-

Equation(41) enables us to analyze the temporal behavior of 4oy performed by the laser beam on level Nd.33, one

state No. 2.

C. Decay rate vsB
We write, as in Eq(36),

y(B)

Spole™ —lwo+I1AE(B)— R (42

Substituting Eq(35) into Eg. (41) and taking the real part,
one obtains the following expression for the decay rate:
¥(B) = mgwol x*(wo+B) + x*(wo—B) 6(wo—B)]
+0(g"). 43
On the other hand, by Eq37), one can write
X (@o+B)+ x*(wo—B)6(wo—B) N
2x*(wo)

O(g".
(44)

y(B)=vy

can view this phenomenon as an “inverse” gquantum Zeno
effect, for decay isenhanced(rather than suppressety
observation.

As we shall see in Secs. IV and V, the emitted photons
have different frequencig$or they correspond to decay onto
different dressedFang state$. By selecting the photon
wavelength(i.e., by means of filte)s one could therefore
also measure the different contributions to the inverse life-
time in Egs.(44),(45). We shall come back to this point later.

As already emphasized, E@5) is valid forB<A. In the
opposite(unphysical caseB> A, by Eqs.(24) and(44), one
gets toO(g*

x?(B)

X2 (o

7(5)2% x(B/A)"# (B>A). (46)

This result is similar to that obtained in R¢8]. If such high
values ofB were experimentally obtainable, the decay would
be considerably hindered afcould be properly viewed as
the “strength” of the observation performed by the laser

This is the central result of this paper and involves no apfield on level no. 2Aquantum Zeno effegtHowever, in such

proximations: Equation44) expresses the “new” lifetime

a case, many additional effects would have to be considered

¥(B)~1, when the system is bathed in an intense laser fieléind our analysis should be modified in order to take them
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into account. A similar remark was made by Kofman and dP/dw dPp/dw
Kurizki in a different contex{13]. p
A final remark is now in order. If one would use the !
approximation(38) in Eq. (39), in order to evaluate the new /
lifetime, i.e., if one set(s) = Q(spe) =const, one would /

obtain Q(B,s)=Q(s)=Q(spee), i-€., N0 B dependence.

Therefore, the effect we are discussing is ultimately due to 3

the nonexponential contributions arising from the cut. In par- 05 i 1.5 2 0

ticular, viewed from the perspective of the time domain, this (a) w/wa

effect is ascribable to the quadratic short-time behavior of

the 2—1 decay. FIG. 5. The spectrun67) of the emitted photons. The height of

the Lorentzians is proportional to the matrix elemghtw) (dashed

D. Estimates line). We chose an electric quadrupole transition, with2 andy

=10 150, and used arbitrary units on the vertical axia. B=0;

We saw in the previous subsection that the r&@ia, is =
(b) B= w¢/5; note that from Eq(45) y(B)=(28/25)y.

the relevant quantity in the evaluation of the modified life-
time. Let us therefore try to get a rough feeling for the mag- o ) »
nitude of the relevant physical parameters. In order to affecth€ relevant quantity in EqA45)]. For laser intensities that

significantly the lifetime of level No. 2, we have to look at @€ routinely used in the study of electromagnetic induced
rather large values d8: for instance at 1-3 transition of the fransparency, the effect should be experimentally observable.

electric dipole type. In such a case, Eg8) applies For a quick comparison remember tiais just half the Rabi
frequency of the resonant transition J<ee paragraph fol-
B?=2mafo| €, X1 No- (47 lowing Eq.(22)].
Considering the angle average IV. PHOTON SPECTRUM
(€, -xgd?)= = x4 48) It is interesting to look at the spectrum of the emitted
€koho" M13 /T 3 1%13 photons. It is easy to check that, in the Weisskopf-Wigner
_ . approximation, the survival probabilityl((0)| ¢ (t))]?
and remembering that the decay rate is =|x(t)|? decreases exponentially with time. The standard
4 way to obtain this result is to neglect the cut contribution in
T 1= = a|x4208, (49  the compless plane, or equivalently, to substitute in EA49)
3 the pole determination of the self-energy function
we obtain - 1 1 1
X(8)=—— ~— = ,
, 7™ T Stiwg+Q(B,S) s+iwg+tQ(B,Spoie) S~ Spole
B =§noﬂ—g, (50 (53

which, reinsertingc’'s and#’s, reads from which one gets

3 3 y(B)

T C )\L — — S A
BZZEnoﬁQOEﬁrli%:(nOﬁQO) 16#2(711-\13)' (51) X(t) eXKSpmet) eX% 1wt 2 t) , (54)
0

where A =2mc/Q,. The quantityB? has dimensions of where wy=wo—AE(B). In this approximation, for any
squared energy and is given by the product of the energy ofalue of B, the spectrum of the emitted photons is Lorentz-
the laser field contained in the volumg/1672 times the ian. The proof is straightforward and is given in Appendix B.
energy spread of the 1-3 transitiéky. ThereforeB depends One finds that, foB=0, the probability to emit a photon in
on both laser and atomic system. Observe that’ is the the range {0 +dw) reads

number of laser photons contained in the volukje

In terms of laser poweP and laser spot are, Eq. (51) dPg_o=g2woxX(w)f (0—wo;y)dw, (55
reads
where
B2 PN Al 132p—)\E hl 19 eVv? 2
—J\@( 13)= A (A1) eV, (52 .
floiy)=——F (56)
whereP is expressed in Watd, in um, Ain um? and4l’ W+ yl4

in eV. In Eq. (52) the quantityB is expressed in suitable
units and can be easily compareduig[the ratioB/wy being  On the other hand, wheB+0 one gets

023804-7



P. FACCHI AND S. PASCAZIO PHYSICAL REVIEW A62 023804

N | _ In this case, the system evolves in the subspace labeled by
dPg=g wox“(w)5{f[w—wo—B;¥(B)] the two eigenvalued/=1 andA\,=N,, whose states read
*filo—wotBiy(B)l}do. 57 |[#(0)=x(D)]2;0N0) + 2" Vi (1)]1: Lo ,No)
K,

The emission probability is given by the sum of two Lorent-
zians, centered imy= B. We see that the emission probabil- +" 210 (1)|3; 24 ,No—1). (62
ity of a photon of frequencywy+B (wg—B) increasegde- kA
crease)_s with B (Fig. 5. The linewidths are modified By using the Hamiltoniar{59) and the state¢s2) and iden-
according to Eq.(45. When B reaches the “threshold” ... T . . .

- ) — , tifying Ng with No=|a|*, the Schrdinger equation yields
value wo, only the photon of higher frequencynf+B) IS 3gain the equations of motidii3), obtained by assuming a

emitted (with increasing probability v8). coherent state for the laser mode. Our analysis is therefore

_Photons of different frequencies are therefore emitteqngependent of the statistics of the driving field, provided it
with different rates. We shall understand better the featureg sufficiently intense, and theconvenient use of number

of the emission in the next section, by looking at the dressed;ates is completely justified.

states of the system. Energy conservation implies that if there are two emitted
photons with different energie@s we saw in the previous
V. DRESSED STATES AND LINKS WITH INDUCED section, there are two levels of different energies to which
TRANSPARENCY the atom can decay. This can be seen by considering the

It is useful and interesting to look at our results from alaser—dressedFanc) atomic .states.[30]. The shift of the
different perspective, by analyzing the modifications of thedressed _stat(_es can be obtained directly from the structure of
energy levels provoll<ed by the laser field. For simplicity the Hamiltonian(59). In the sector\o=No, the operaton

' 'is proportional to the unit operator, the constant of propor-

since the average numbiiy of ko photons in the total vol-  tionality being its eigenvalue. Hence one can write the
umeV can be considered very large, we shall perform ourygmijltonian in the following form:

analysis in terms of numbdrather than coherenstates of

the electromagnetic field. In this limit, H=H—-QuNy+Q¢Ng, (63
(1;04, ,Ng|Hind 35040 ,No— 1) which, by the settinde; + NyQ =0, reads
:\/N_Oq)ko)\o H=Ho+Hint
>(1; L0 ,No— 1[Hin3; 04 ,No— 1) =w0|2>(2|+§/ wkalxak)\
=Dy, (58) ’
V(k,\)# (ko,No). [This is equivalent to Eq(6).] In the +§' (b 12|+ dhanl2)(1])
above equation and henceforth, the vegtom,, ,M;) repre- '
sents an atom in stafé), with n,, (k,\) photons andV, +(q)ko>\oalo>\o|l><3|+(D":o>\oako)\o|3><1|)' (64)

laser photons.
In the above approximation, the Hamiltonigl) becomes  Qon the other hand, in the sectdty;y, with N=1 and A\,
=Ny, the last term becomes

(¢koxoalzoxo| 1)(3[+ q”k(oxoakoxol3><1|)

+3" ($aahl1)(@ + #hanl2(1) = (P Nol1){3I+ @, INoI3)(TD)- (69
A

H=w|2)(2|+ Q0|3)(3| + % o @f A

Let us diagonalize this operator, i.e. let us look for two non-
interacting statels+ ) and|—) which are linear combinations

_ . _ of the old state$1) and|3). To this end we write
where a prime means that the summation does not include

+(@in Rkl D3I+ Py Biegrg 3D, (59)

(kg,\g) [due to hypothesig3)]. In addition to Eq.(8), there 1 ,
is now another conserved quantity: indeed the operator |1)= E(|+>+e' o=y,
No=13)(3]+ak 2, (60 e
3)=—(|+)—€"-)), 66
[H,Np]=[Ny,N]=0. (61)  with |[+) and|—) orthonormal:
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(+[+)=(=1=)=1, (+[-)=0. (67) I +B
2 % 2 o
Plugging Eq(66) into Eq.(64), the interaction term becomes > Y+N— +B Y—
11 0 [1> 0
| [ o Pio . \
Hin=> || —=ah|+ 2|+ —=an|2)(+ >
int &~ {( \/E k>\| >< | \/E k)\| >< |
- -B
din bin
+(Ee'5alx|—><2l+ﬁe anl2)(—| (a) (b)
i FIG. 6. Shift of the dressed stats) and|—) vs B. (a) For
e ) ) . .
S —ia s s B<w, there are two decay channels, with >y, . (b) For B
+B 2 e (| ) eI N((+]—eT (=D +Hc,, >wq level | +) is above level2) and only they_ decay channel

(68) remains.
and we sety=0. We see that the laser dresses the sfdfes

where we have seb, , VNo,=Be’. Rearranging the last =, _
0%o and|3), which (if one includes the, photon are degener-

term ate[with energyE=0, due to the choice of the zero of en-
i(B—a) _ ergy: see line after Eq(63)]. The dressed statgs-) and
B[ 5 (X +] === ]+€e°| =) +| |—) have energiest B and —B and interact with staté2)
with a coupling ¢, /v2. Since B=r,y, these are the
_ e i(B—0a) well-known Autler-Townes doubldB1].
—e ) (—)+ 5 (|+)(+] Therefore, by applying the Fermi golden rule, the decay
rates into the dressed states read
=== l+e ) (—[—e = )(+]) , X(wo—B) , x2(wg+B)
y+=2mg 0o 5 y-=27g Wo 5
=BcogB—a)(|+){(+|=[=}-] (73)
P ; _ 16 _ _ A—id _
B sin(f—a) (e —)(+[—e™+)(= . and the total decay rate of std®@) is given by their sum
(69)

and settinga= B the two state$+) and|—) decouple and SRR 79
one gets which yields Eq.(43). One sees why there is a threshold at
B=w,: For B<wy, the energies of both dressed stdtes
are lower than that of the initial stat@) [Fig. 6)]. The
decay ratey_ increases witlB, whereasy, decreases with
B; their sumy increases witlB. These two decay@&nd their

R bk
HinF% {(%aExHXZH %akx|2><+|

Din st N is lifetimes) could be easily distinguished by selecting the fre-
+ Ee aal— )2+ Ee A |2)(—| quencies of the emitted photons, e.g., by means of filters.
We also notice, for completeness, that whgr w, the
+B|+)+|-B|-¥—]. (70) energy of the dressed stdte) is larger than that of staf@)
and this decay channel disappeffg. 6(b)]. As repeatedly
Therefore we can write emphasized, this situation would require a different analysis,
for additional effects would play an important role.
Ho+Hin=Ho+Hin, (72) Finally, let us emphasize that if std@) werebelowstate

] ] ) o |1), our system would become a three-level system in a lad-
where the primed free and interaction Hamiltonians readger configuration, and the shift of the dressed states would

respectively, give rise to electromagnetically induced transparef26.
The situation we consider and the laser power required to
Ho=wo|2)(2|+B|+ ) +|=B| =W~ |+ > ol an bring these effects to light are therefore similar to those used
KA in induced transparency.
, ' i ‘f’:x VI. INFLUENCE OF OTHER LEVELS
HintZE [(Ealx|+><2|+ﬁakx|2><+| (72)

ki Let us now see how our results are modified by the pres-
o ence of off-resonant levels. To this end we generalize the

n P _ ka three-level Hamiltoniar(7) by including other off-resonant

Eak)\| —)(2|+ Eakx|2><_ |)

levels|j) (j=4, ... N) in our analysis:
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N dressed states with energiés=();— ()3, whose contribu-
H=wo|2)(2|+ >, Qj|j)<j|+2 A% A tion to the self-energy function is of ord&?.
=3 kA By starting with the self-energy functidi7) and looking
for the location of the pole one obtains instead of Etp)

+2 (drnah | 12|+ ¢k an|2)(1]) the following expression for the modified decay rate:
kon
N o_\" o\
+E (q)jaﬂocei&)3t|1><j|+q)ikaoe—iﬂ3t|j><l|)' yman)(B)Zy c_ 1_(1)_0 +Cy 1_w—0 (wog—0)
i=3
(75) .

: (79

(9% "
+ 2 C/( 1- —) 6(wo—0,)
where®d; :q)jvko”o are the matrix elements of the-4j tran- 4 @o
sitions and};=E; — E, the energy of levelj) [in particular,

- RN wherex=2j*1.
Pappre = Picgr, @NdQ3=11g in Eq. (7)] By substituting the expressioligd) for the zeroes and the

By a calculation similar to that used in Sec. Il one getScoefficients, valid up to second orderB into Eq.(79) one
again the expressiofil8) for the Laplace trasform of the gets

survival amplitude, with the new self-energy function modi-
fied by the presence of other levels

B2 B2 X wo  ©F
2 ')’man)(B):’y 1+K—+_Z f, K_O__O
Q(B S)_E |¢k)\| w(z) w(z) /=4 5/ 55
, K\ S‘f‘i(,()k‘f'BZEJ!\L?,I:](]‘/(S"‘itsj'f'iwk):l7 2
(76) @o _ “o
- == 0wo—5))
o, &2 °
wheref;=|®|?/| D3| and 5= Q;— Q. ’
The denominator o (B,s) is now a polynomial of order gz N wo wg
N—1 [whenN=3 one reobtains Eq21) with a quadratic =y(B)+ Y E f, K =%
polynomial. Hence the newQ(B,s) in Eq. (76) hasN—1 wp /=4 s
branching points and the propeli$9) is generalized to 2
W Wo 3
Q(B,s)=c,Q(s+io,)+c Q(s+io.) ‘(5_/_5_3) 0(wo=0,)|+0O(B%), (80
N
+ 2 c;Q(s+ioyj), (77)  wherey(B) is the decay raté45) evaluated in the three-level
=4 approximation.
where{—io, ,—ic_,~io} (j=4 ... N) are the branch- The above general expression can be evaluated in practi-

cal cases of interest. For instance, by assuming that the off-
resonant levels are well separated from the three main levels,
that is by assumings,=Q ,—Q;>w,, all dressed states
Sther than/ =) do not enter in Eq(79), because their ener-
ngies are larger than the energy of level |2), and Eq.(80)

ing points, i.e., the zeroes of the denominatoB,s). In
this case one has to solve an algebraic equationNof (
—1)th order, whose zeroes do not have in general an an
lytical expression. We seek a perturbative solutiomBirit is
lengthy, but straightforward, to obtain up to second order i

B reads
N f 2 N (1)0)
=+B—B2Y, —L B)=v| 1+x—|1+ > f,—||=yB*),
oc.=*B—B 2:4 25" Ymanyl Y wg ZA /5/ ¥
(81
_ 54870
=9 5 where
o . B*=B| 1 }N) f,20 82)
=17 g2y L =B|1+ Pt
Ci=53%F 524 45]‘ B ;4 25J-2, /=4 726,
(78) This is the correction sought: the effect of sufficiently off-
c.= Bzf_J' resonant levels§, > wqy, modifies the decay rat@5), calcu-
J 52 lated in the three-level approximation, simply by chandgig

into B*. Observe thaf , is a rapidly decreasing function of
From the above equations we see that the presence of off* (polynomial fall-off in atomic systems Notice also that
resonant levels modifies the energies=+B of the two  B*>B, hence the presence of the other levels enhances the
dressed states by a shift of ordgf and createdN—3 new  effect discussed in Sec. IIl.
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VIl. CONCLUDING REMARKS exp(—ik-X)=exg —iwn-x)
We have studied the evolution of an unstable system un- (—iw)?
der the action of an externdlase) field. The dynamical =1—-iw(n-x)+ o1 (n-x)%+- -
evolution of level No. Qinitial statg is modified by the laser ’
field, tuned at the transition frequency 1-3. For physically (A2)

sensible values of the parameters, the decay of level No. 2 is

fasterwhen the laser is present. Equatiddg),(45) (valid to ~ and integrating term by term one obtains the asymptotic se-
fourth order in the coupling constanexpress the new life- ries

time as a function of the “natural” one and other parameters

characterizing the physical system. The initial state decays to /277\/5 - © s

the laser-dressed states with different lifetimes. We have ob- N 2 5520 Ay @™ (A3)
tained Eq.(44) in three different ways, deriving the Fermi

golden rule from the time-dependent Safirmer equation, | here

by making use of Laplace transforms, as in Sec. Il C, or

starting from the dressed states, as in E@8),(74), or as a (—i)s

consequence of a normalization condition, as in &13). qS‘\)E s—'J d3x € j12(x)(n-x)3 (A4)

We also computed, in Sec. VI, the corrections due to off- '
resonant levels. We emphasize that, since we always work i
the Weisskopf-Wigner approximation, the conceptual prob

lems related to state preparati®#®] and deviation from ex- not depend onw. Observe thag® corresponds to electric-

ponential behaviof20,1,18,19 were not considered. dipole transitionsE1, g™ to electric quadrupol&2 and/or
In which sense is the phenomenon discussed in this paper

an “inverse” quantum Zeno effect? If the situatidd> A magnetic dipole transitions 1, and so on. Hencs=j ~ A,

were experimentally attainable, then decay would be hiny\/herm\:0 (A=1) stands for magneti@lectrig transition

dered and one could reasonably speak of a quantum Ze Mj(Ej). Since the dominant contribution to the integral in

effect provoked by the “continuous” observation performedr]gq' (A4) comes from a region of sizzand the current,, is

; 2
on the system by the laser beam. On the other hand, Whee;?sentlallywola , We get

B< A, one can still think in terms of a “continuous gaze” of
the laser on the system, but this enhancather than hinder
decay. One should also notice that the inclusion of the spo
taneous decay of level No. 3 in the Hamiltoniéf) would
not change our conclusiofup to orderI’;3/B). The inter-
pretation in terms of an “inverse” quantum Zeno effect is ) ;
appealing and enables one to look at the problem from a bia~ i @' = (wod) (wa)',
different perspective.

_Pkaz'fm depends only on the direction &). Notice that
we explicitly wrote everyw dependence and thgt® does

qgs)\)oc(l)oas+l, wWo= EZ_E]_. (AS)

rﬁ wa<1 the dominant term in the seri€¢A3) is the first
nonvanishing one, namely,

(A6)

for somes=r. In the continuum limit one gets
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APPENDIX A 0 (2m)°

We discuss here some general properties of the matrix o
elements and derive Eq@4),(25) of the text. An exhaustive = f do g?wox*(w), (A7)
analysis of some general features of the matrix elements can 0
be found in Ref[29], but we will focus here on the behavior
at small and large values @f. The matrix element$2) of
the 1-2 interaction Hamiltonian read

where we have defined

w2V
9?wox?(w)= lim

2T ) ) vow(2)3
b= \/WJ d3x e e - jAX), (A1)

as in Eq.(23). From Eq.(A6) we obtain

> f dQ|¢nl?  (A8)
A

wherea=e?/4me, is the fine-structure constant. If the wave-

0 2
length of the radiation is large compared to the siz# the ,_2ma O | 2T 2 a1 A9
system(i.e., <A =a"1) the main contribution to the inte- [al®=v 5 Zo A v elanle (A9)
gral (A1) comes from small values of=|x| (wr<1). Ex-
panding the exponentiakE nw) and therefore
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1
2, 2 & 2] ,2r+1 z t=—.sté§i s B3
J“wox“(w) (277)2(; fdQ|qm| ® a(t) 2 )¢ n(s), (B3)
prin PAGRE which can be evaluated by summing over the integrand resi-
x[a(wea)” " *]wg —) (A10)  dues. The quantityy,, (t)|°(|z(t)|?) represents the prob-

ability that, at timet, the transition 2-1 (2—1—3) has
Remembering that 2+ 1=2j—2\+1=2j 51, we obtain taken place. Wheh— o, the contribution 0¥ (that has a

the first equation in Eq(24) and Eq.(25). finite negative real partis exponentially damped. This
On the other hand, if the wavelength is much smaller tha€@ves only the contributions of the poles-ii (w,+ B).
a (i.e. ®>A), we first rewrite Eq(A1) in the form We look first at the casB=0 (laser off. One gets %,
=0, Vt)

¢ _ [27Taf d3xe—ia)n~xe~k J (X) |¢ |2
9N Vo kn " 112! K\ (B4)

+0)|2= —
Vi (+0)] (o wg)2+ 7214

2T o
“VVo f dxj &y 2 X)) (A1) and, in the continuum limit23), the probability to emit a
photon in the frequency range(w+dw) reads

where . _
dPg-0=0%wox(@)f (0~ wo;y)dw, (BS)
jn)\,lz(XH)EJ d?x, €} - j1aX) (Al2)  wheref, is the Lorentzian profile
and x=xn+x, . According to the Riemann-Lesbegue f(w:y)= (B6)
lemma, the integral in EGA11) vanishes in thev— oo limit. Ly w2+ y24

In particular, if j,, 1AX)) is N times differentiable, integrat-
ing by parts we get This is Eq.(55) of the text. The quantity? must be normal-
ized to unity: imposing this condition one gets the Fermi

27 1 o dv golden rule(37).
0=\ Vg (i )NJ’ dxe ﬁlnmz(x) (A13) On the other hand, wheB+0, the total emission prob-
@ ability is given by the sum

and we can write INCIERENCE (87)

p=0(0 N7, (0>A) (A14)  anditis straightforward to derive the following expressions

which yields the larges behavior of the second equation in [vk=wx— wo and we write for simplicityy(B) =]

Eq. (24). It goes without saying that if,, 1(x|) is an ana- 2

i : : E2NG y
lytic function, then_¢kx.—>0 more rapidly than any power. Vi () |2= . . ,,E+ " coZ(Bt)
The second equation in ER4) is therefore a conservative 4 Y _ g2
estimate. kTR
. ¥B .
APPENDIX B +B2sir?(Bt) + —57Sin(2B1Y) |,
In this appendix we shall analyze the spectrum of the
emitted photons. We start by substituting E§3) into Egs. INE 52
(19) and(20), to obtain |Z4 (0)|?= 5 > (V§+ Z) sir?(Bt)
. ) Vk+i— _B2
~ —igp(stio) 1 2
Yin(8)= > o (B1)
(s+iwy)*+B S~ Spole 5 vB .
+B co§(Bt)—75|n(ZBt) , (B8)
- \/qu)’kc Ao Pin 1 . .
Zin(S)= — 0 _ (82)  which yield
(S+Iwk)2+ B2 S~ Spole
. . . . X 2 2_ |¢k)\|2 2 ,y2 2
Closing the Bromwich path with a semicircle in the half [Yia(®)]*+ |z ()|*= 2 2| Vit 7 tBY).
plane Res<0, we get vti E) _B?

(B9)

1 ~
t)==—| ds &%, (s),
Yia(t) 2mi jr Yia(s) Therefore, in the continuum limit, we can write
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dPg=g?wox?(w) notice that the valug43) of y(B) can be readily estimated

5 by imposing the normalization of the emission probability

(0= wo)?+ 2+ B

X 2
— Y

_ —B)?2+ -
(0—wo—B) 4

© 1 _
srdo. f dPg= fo gzonz(w)E[fL(w—wo_Bi)’)

((1)_504' B)2+ ’yz

+f (0—wo+B;y)]dw
=1. (B12)

(B10)
This formula can be rewritten in the following form:

, o, 1 _ Performing the integration one obtai[1$<50, hence one
dPs=g wox“(w)5[fL(w—wo=B;7) can integrate over the whole real axis and takéw) equal
to its value on each Lorentzian pdak

+f (w—wo+B;y)]dw. (B11)
1 _ — 2
This is Eq.(57) of the text. We see that the emission prob- 1=f dPg~ Egzwo[)(z(woJr B)+ x*(wo— B)]W'
ability is the sum of two Lorentzians, centeredag—B and (B13)

o+ B and weighted by2wox%(w). This result is in agree-
ment with that obtained in Ref$16,32. Incidentally, we which yields Eq.(43) of the text.
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