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Domain wall suppression in trapped mixtures of Bose-Einstein condensates
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The ground-state energy of a binary mixture of Bose-Einstein condensates can be estimated for large atomic
samples by making use of suitably regularized Thomas-Fermi density profiles. By exploiting a variational method
on the trial densities the energy can be computed by explicitly taking into account the normalization condition.
This yields analytical results and provides the basis for further improvement of the approximation. As a case
study, we consider a binary mixture of 87Rb atoms in two different hyperfine states in a double-well potential and
discuss the energy crossing between density profiles with different numbers of domain walls, as the number of
particles and the interspecies interaction vary.
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I. INTRODUCTION

Binary mixtures of Bose-Einstein condensates [1] are
of great interest due to their complex dynamical features
and their role in the emergence of macroscopic quantum
phenomena [2]. Mixtures are experimentally available and
usually made up of two alkali atomic species [3–9]. They
generally display repulsive self-interaction and are confined
by various external potentials. Depending on the interspecies
interaction, two classes of stable configurations are possible:
mixed and separated. The latter are more interesting, since
it is in this case that the observation of phenomena such as
symmetry breaking and macroscopic quantum tunneling of
one species through the other one [10–12] is possible. Evidence
of phase separation has been observed in Refs. [8,9]. Many
recent articles are devoted to the investigation of dynamical
effects in mixtures, such as vortices and solitons (see [13–16]
for recent experimental and theoretical studies).

Different approaches are possible in order to study the
ground state of these systems. If the number of particles in the
condensate is very large compared to the number of particles in
the excited states, the fields associated to the two species can
be treated as classical wave functions. This approach leads
to the Gross-Pitaevskii equations [17], which are nonlinear
Schrödinger equations obtained by finding stationary points
of the zero-temperature grand-canonical energy of the system.
The Thomas-Fermi (TF) approximation, which consists in this
case in neglecting the kinetic energy of the system, is then
usually applied [17]. A great deal of results are obtained in
particular cases, such as confinement by a hard wall trap [18],
harmonic or lattice potentials [19], and axisymmetric traps
[20], and also in the presence of the gravitational force [21].
The problem of the stability of mixtures has been tackled also
with renormalization-group techniques [22].

The presence of the kinetic term in the energy functional
of a binary mixture leads in particular to the regularization of
possible domain walls, which sharply separate the two species
in the TF ground states [10,23–26]. This is generally related
to the problem of minimizing the surface energy, that is also
found in the theory of superconductivity [27].

In this work we introduce a variational method in order to
approximate the Gross-Pitaevskii solution in a neighborhood
of a domain wall and estimate the total energy of a mixture. Our
technique explicitly takes into account the normalization of the
condensate wave functions and ensures complete analytical
feasibility.

This article is organized as follows: in Sec. II we summarize
results obtained in the TF approximation which are relevant
to our analysis; in Sec. III we introduce the regularization
technique and obtain results regarding the energy increase with
respect to the TF approximation; in Sec. IV we examine a case
study in which macroscopic effects related to domain-wall
suppression can be observed and present a quantitative phase
diagram; in Sec. V we suggest further possible developments
of our technique.

II. BINARY MIXTURES

A. Energy functional

Let us consider a binary mixture of Bose-Einstein con-
densates, confined by the external potentials Vk(x), with
k = 1,2. We assume that the particles are tightly confined
in the transverse directions, so that the system is quasi-
one-dimensional [17]. Let Ukk > 0 be the parameters that
determine the self-interaction between particles of each species
and U12 = U21 > 0 be the interspecies interaction parameter.
The ground state of the system is determined by the coupled
Gross-Pitaevskii equations [17,27,28]

{
− h̄2

2mk

d2

dx2
+ Vk(x) +

∑
j

Ukj |ψj (x)|2 − μk

}
ψk(x) = 0,

(1)
with k = 1,2. They are the variational equations of the quartic
energy functional

E(ψ1,ψ2) =
∑

k

{Tk(ψk) + Vk(ψk)} + U(ψ1,ψ2) (2)
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under the constraints ∫
dx ρk(x) = Nk, (3)

where

Tk(ψk) =
∫

h̄2

2mk

∣∣∣∣dψk

dx
(x)

∣∣∣∣
2

dx,

Vk(ψk) =
∫

Vk(x)|ψk(x)|2dx,

(4)
U(ψ1,ψ2) =

∑
j,k

Ujk(ψj ,ψk)

= 1

2

∑
j,k

∫
Ujk|ψj (x)|2|ψk(x)|2dx.

Here ψk(x) are the condensate wave functions, whose squared
moduli ρk(x) = |ψk(x)|2 represent the local densities of each
species; Nk are the numbers of particles making up the
condensates; while Tk , Vk , and U are the kinetic, potential, and
interaction energy, respectively. We will assume henceforth
that the condensate wave functions are real, since energy
minimization requires their phases to be constant.

B. Thomas-Fermi approximation

The TF approximation [17] is in this case equivalent to
neglecting the kinetic terms in Eqs. (1) and (2), so that

ETF(ρ1,ρ2) =
∑

k

Vk(
√

ρk) + U(
√

ρ1,
√

ρ2). (5)

The value of the adimensional parameter

α = U12√
U11U22

(6)

is crucial in qualitatively determining the TF ground state.
If α > 1, which is the case of interest here, the ground-state
density profiles are completely separated in adjacent regions
divided by domain walls. In the regions where only species k

is present, the solution to the TF equations reads

ρTF
k (x) = μk − Vk(x)

Ukk

. (7)

Equation (7) completely determines the functional dependence
of the densities on the external potential (and on the chemical
potentials), once their supports are given. Here we are
interested in the ground-state solution, so that the supports are
determined by minimizing the energy of the system Eq. (2) as
a function of the number and the positions of the domain walls.
In Ref. [29] we proved that for continuous trapping potentials
stationarity of energy requires that the densities at a domain
wall at Rj satisfy√

U11ρ1(Rj ) =
√

U22ρ2(Rj ). (8)

Moreover, in the special case V (x) ≡ V1(x) = V2(x), condi-
tions Eq. (8) imply that the external potential, and thus the
density of each species, should be the same at all domain
walls.

The TF approximation works very well for large numbers
of particles and provides a good estimate of the energy of
the system. Despite being small with respect to the potential

energy, corrections due to the kinetic term nonetheless give rise
to macroscopic effects. The most relevant of such effects is the
crossing between stationary states with different numbers of
domain walls in the ground state [11,12]. It is thus necessary,
in order to determine the actual ground state of a mixture, to
consider a regularization scheme of the TF density profiles,
that enables us to smooth parts of the TF profiles, like domain
walls and zeros, that provide an infinite contribution to the
kinetic energy [17].

III. VARIATIONAL REGULARIZATION
OF DENSITY PROFILES

Many attempts have been made so far in order to con-
sistently estimate the energy corrections due to the kinetic
contribution. The pioneering works by Ao and Chui [10] and
Timmermans [23] are based on an exponential approximation
of the TF density profiles, by extrapolating the solution of the
Gross-Pitaevskii equations far from a domain wall, and on
a linear approximation of the regularized walls, respectively.
Other authors [24,26] put forward a regularization with fixed
chemical potential in various regimes.

The task we will try to accomplish in this work is to
find a proper domain-wall regularization, which provides a
reliable approximation to the ground-state profile and energy
of a binary mixture in a trapping potential, and which is
at the same time an analytically manageable trial function.
The approximations in Refs. [10,23] are based on a rather
crude ansatz, but provide a good estimation of the order of
magnitude of the energy changes due to the kinetic terms.
However, we will try to find better upper bounds to the
ground-state energies, since it is possible that a small energy
change results in macroscopic differences in density profiles.
Our approximation will be referred to a system with fixed
numbers of particles, and will strictly rely on the preservation
of the normalization conditions. It is indeed difficult to use
results obtained with a fixed chemical potential [24,26] in this
case, since for nontrivial external potentials it is generally
impossible to invert the normalization conditions in Eq. (3)
and explicitly express the chemical potentials as functions of
the numbers of particles.

A. Domain walls

In order to regularize the domain walls, it is sufficient to
replace the singular TF density profiles with a continuous
function, with a bounded first derivative. The minimization
of the kinetic energy leads to tails of each species penetrating
through the domain wall.

Our choice of trial profiles is based on an exponential tail
regularization of the TF solutions. Let us consider a domain
wall placed at position R0. In its neighborhood we assume as
profiles the continuous functions

ρ̃1(x) =
{

ρTF
1 (x) if x < R1

ρTF
1 (R1)e−2(x−R1)/�1 if x � R1

, (9)

and

ρ̃2(x) =
{

ρTF
2 (x) if x > R2

ρTF
2 (R2)e2(x−R2)/�2 if x � R2

, (10)
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FIG. 1. (Color online) Plot of the trial density profiles Eqs. (9) and
(10) in a neighborhood of a domain wall placed at R0. The solid (red)
line represents the density of the first species, and the dashed (black)
line represents the density of the second species, with U11 < U22.

with R1 < R0 < R2, �k > 0, and ρTF
k being the TF densities

Eq. (7). See Fig. 1. The points Rk are fixed in order to locally
preserve the normalization conditions. This is accomplished
by imposing that the integral of the removed part of the TF
profiles be equal to that of the new exponential tails:∫ R0

Rk

dx ρTF
k (x) =

∫ (−1)k+1∞

Rk

dx ρ̃k(x), (11)

which gives

Rk − R0 = (−1)k
�k

2

{
1 + O

[
�k

ρTF′
k (R0)

ρTF
k (R0)

]}
. (12)

In the following, we will neglect all corrections depending on
the first derivatives of the TF densities, ρTF′

k = dρTF
k /dx, which

depend linearly on the derivatives of the external potentials.
This assumption, which involves conditions on the (by now
arbitrary) parameters �k , will be expressed at the end of our
calculations in term of physical quantities. It is remarkable that
under this approximation the regularized density profiles still
satisfy condition Eq. (8) at R0.

Once the trial profiles are chosen, we proceed to the com-
putation of the difference in potential and interaction energy
with respect to the TF densities. It is convenient to explicitly
show the dependence of the energy on the largest penetration
length, say �1, and the ratio η = �2/�1 � 1. Since α > 1,
the mixing must result in an increase in potential energy. The
self-interaction energy associated to the exponential tail of
ρ̃1(x) reads

Ũ11 = U11

2

∫ ∞

R1

ρ̃1(x) dx = 1

8
�1

[
ρTF

1 (R0)
]2

. (13)

This contribution replaces the self-interaction energy of the
removed TF density:

UTF
11 = U11

2

∫ R0

R1

ρTF
1 (x) dx = 1

4
�1

[
ρTF

1 (R0)
]2

. (14)

The same results hold for the second species after the
substitution �1 → η�1. As expected, extending the density
profiles implies a reduction in the self-interaction energy,
Uself = U11 + U22, which reads

�Uself (�1,η) = − 1
8 (1 + η)U11�1

[
ρTF

1 (R0)
]2

. (15)

A positive contribution comes from the interspecies interaction
terms, Uinter = U12 + U21, which are due to the penetration of
the tails in the bulk of the other species and their superposition
around R0. (Remember that in a TF separated configuration
Uinter = 0.) The total change in the interspecies interaction
energy reads

Uinter(�1,η) = U12

∫ ∞

−∞
ρ̃1(x)ρ̃2(x) dx

= αU11�1[e−(1+η) − η2e−(1+1/η)]

2(1 − η)

[
ρTF

1 (R0)
]2

.

(16)

Observe that the limit η → 1 is finite. It is easy to verify that
no corrections come from the interaction with the external
potential at the chosen order of approximation. The results
Eqs. (15) and (16) are found under the hypothesis that the
distance separating the considered domain wall from other
possible walls is much larger than the �k’s.

Let us now consider the contributions from the kinetic
energy. The value of the kinetic energy of the densities in
the bulk is consistently neglected in our approximation, being
O[(�kρ

TF′
k /ρTF

k )2] with respect to the leading terms. On the
other hand, the contribution across the domain wall depends
on the inverse penetration lengths and reads

Twall(�1,η) = h̄2

2m1

∫ +∞

R1

∣∣∣∣d
√

ρ̃1

dx

∣∣∣∣
2

dx

+ h̄2

2m2

∫ R2

−∞

∣∣∣∣d
√

ρ̃2

dx

∣∣∣∣
2

dx

= h̄2

4m1�1

(
1 + η2

0

η

)
ρTF

1 (R0), (17)

where

η0 ≡ ξ2

ξ1
=

(
m1

m2

) 1
2
(

U11

U22

) 1
4

(18)

is the ratio between the healing lengths

ξk = h̄/

√
2mkUkkρ

TF
k (R0), (19)

(k = 1,2) of uniform condensates whose densities are ρTF
k (R0)

[17].
The energetic contributions Eqs. (15)–(17) depend on the

free parameters �k . Heuristically, as a benchmark, one can
evaluate them at �k = ξk/

√
α − 1, the penetration lengths

associated with the exponential tail of one species into the
bulk of the other one, which are obtained via an approximated
Gross-Pitaevskii equation [10]. Besides yielding a divergence
of the penetration for α close to 1, which is unphysical for a
system with a finite numbers of particles, this is not the optimal
choice, and it can even yield an energy 20% larger than the
minimum for physical parameters. In a situation where small
energy changes are involved, this discrepancy can be very
relevant. The best strategy is to minimize the total energy of
the wall over the family of trial functions Eqs. (9) and (10)
parametrized by �1 and η = �2/�1:

Ewall(R0) = min
�1,η

{�Uself + Uinter + Twall} . (20)
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FIG. 2. (Color online) Behavior of the function 	α[η̄(α)], ob-
tained by solving Eq. (23), for different values of η0. Solid (blue)
line, η0 = 0.99; dashed (red) line, η0 = 0.75; dotted (green) line,
η0 = 0.5.

This will enable us to get a much more accurate upper bound
for the ground-state energy of the binary mixture.

The minimum in Eq. (20) is attained at a single point
[�̄1(α),η̄(α)] and reads

Ewall(R0) =
{

h̄2U11
[
ρTF

1 (R0)
]3

2m1

} 1
2

	α[η̄(α)], (21)

where

	α(η) =
{
α

[e−(1+η) − η2e−(1+1/η)]

1 − η
− 1 + η

4

}1/2

×
(

1 + η2
0

η

)1/2

. (22)

The optimal ratio between the penetration lengths, η̄(α), is the
solution to the transcendental equation:

eη
[
e1+1/η(1 − η)2

(
η2 − η2

0

) + 4α η
(
η + η2 − η3 + η2

0

)]
= 4α e1/η

[
η3 − (1 − η − η2)η2

0

]
. (23)

In Fig. 2 the function 	α[η̄(α)] is plotted versus α for different
values of the parameter η0, while in Fig. 3 a comparison
is displayed between the minimized energy and the result
computed with the bulk penetration lengths ξk/

√
α − 1. It

can be observed that the minimizing energy has a monotonic
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FIG. 3. (Color online) Comparison between the minimum energy
{units of ξ1U11[ρTF

1 (R0)]2} of a domain wall [Eq. (21)] (solid blue
line) and the energy computed for penetration lengths ξk/

√
α − 1, for

η0 = 0.9 (dashed red line).
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FIG. 4. (Color online) The solid (blue) line represents the optimal
penetration length �̄1(α) (units of ξ1) plotted against α for η0 = 0.9.
The dashed (red) line is the bulk penetration length ξ1/

√
α − 1 [10],

plotted here for comparison.

behavior with α. The optimal penetration length

�̄1(α) = ξ1

(
1 + η2

0
η̄(α)

)
	α [η̄(α)]

(24)

is plotted versus α (for η0 = 0.9) in Fig. 4. The conditions
ensuring that terms depending on the first derivatives of
the densities can be neglected are thus summarized by the
following inequality:

1 + η2
0/η̄(α)

	α[η̄(α)]

h̄√
2m1

|V ′(R0)|
U11(ρ̄1)3/2

max
j,k

√
Ujj

Ukk

� 1. (25)

This condition also ensures that the distance between domain
walls is always larger than �k’s, thus validating the results in
Eqs. (15) and (16).

Since the dependence on α and ρTF
1 in Eq. (21) is factorized,

the total correction for a TF configuration with domain walls
placed at {R1, . . . ,Rw} is

�E (w) =
w∑

j=1

Ewall(Rj ) ≡ Cα

w∑
j=1

[
ρTF

1 (Rj )
]3/2

, (26)

with

Cα = h̄(U11/2m1)1/2	α[η̄(α)]. (27)

For confining potentials proportional to each other, includ-
ing the interesting case in which they are equal, the energy
increase Eq. (21) is independent of the specific domain wall,
since Eq. (8) implies that the densities are the same at all
the walls of a stationary configuration, namely, ρTF

1 (Rj ) =
ρTF

1 (R0) for any j [29]. This implies that the energy correction
to a TF configuration with w domain walls is simply

�E (w) = wEwall(R0). (28)

On the other hand, the condition of applicability of our
approximations in Eq. (25) depends on the specific domain
wall through the first derivative of the potentials at each wall.
Of course, a uniform control on the derivatives of the potentials
would give a sufficient condition for their applicability to all
possible configurations.

It should be emphasized that the validity of our approxima-
tion has an upper bound in α. Indeed, it can be deduced from
Eq. (22) and Fig. 3 that the function 	α[η̄(α)] is not bounded
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from above as α increases, leading to a divergent correction to
the TF energy, which frustrates regularization attempts. The
reason lies in the fact that for α → ∞ the exponential tail
ansatz is no longer justified, since in this case one species
feels the other one like a hard wall, thus leading to solutions of
the form tanh(x/

√
2ξk) and to a saturation of the domain-wall

energy. Since the typical variation lengths of the densities are in
this case

√
2ξk , we can bind the validity of our ansatz to values

of α verifying �̄k(α) �
√

2ξk (see Fig. 4 for a comparison),
typically corresponding to values α � 2.5–3, which matches
well the experimental ranges.

B. Profile edges

The presence of first-order zeros at the edges of the TF
density profiles, which are compactly supported, gives rise
to logarithmic divergencies in the kinetic energy. Even this
situation can be tackled by a proper regularization of the
densities, leading to an increase in the potential energy and
to a kinetic contribution [17]. To this end, we consider a
zero at position x0 and conventionally consider a TF profile
ρTF

k (x)θ (x0 − x) in a neighborhood of x0, θ being the unit step
function. The regularization is based on the solution of the
linearized single-condensate wave function in a neighborhood
of x0, namely,

√
ρk ∝ Ai(x/δ), with Ai(y) being the proper

Airy function [30], decreasing as y → ∞, and

δk =
[

2mkFk(x0)

h̄2

]−1/3

, with Fk(x0) =
∣∣∣∣dVk

dx

∣∣∣∣
x0

, (29)

being the characteristic length. Corrections to a solution based
on the linear approximation of the potential are negligible if
the second derivative of the potential is much smaller than
(2mkF

4
k (x0)/h̄2)1/3.

Following such a scheme, we consider the trial family of
(continuous and positive) regularized TF profiles

ρ̃k(x) =
{

ρTF
k (x) if x < xk

ρTF
k (xk) f

(
x−xk

δk

)2
if x � xk

, (30)

with f (y) = Ai(y)/Ai(0). As in the case of the domain wall,
the point xk is determined by requiring the local normalization
condition to be fulfilled. The result, analogous to Eq. (12),
reads

xk − x0 = −2I0δk, (31)

where I0 = ∫ ∞
0 dyf 2(y) 	 0.53. Summing the variations of

the self-interaction energy (negative) and of the external
potential energy (positive) to the kinetic energy yields the
total-energy change due to the regularization of the zero of the
density profile:

E (k)
zero(x0) 	 0.274

h̄2

mkUkk

Fk(x0). (32)

This contribution depends on the specific zero, as well as on
the species k, since the first derivatives of the potential at its
zeros are generally not related.

In order to get a feeling for the orders of magnitude of the
various energies, one can consider the simple case in which
the trapping potential is well approximated by a power law:

V (x) ∼ |x|n. (33)

A TF zero, placed at x0, of the density profile of species k, is
determined by the condition μk = V (x0) ∼ xn

0 . By considering
the last relation and the normalization conditions, one can
obtain the scaling law of the chemical potential with respect to
the number of particles, namely, μk ∼ N

n/(n+1)
k . Hence one can

obtain the scaling laws of the TF energy, ETF ∼ N
(2n+1)/(n+1)
k ,

and of the kinetic energy, including the contribution Eq. (32),
T ∼ N

(n−1)/(n+1)
k . The energy of a domain wall depends on

(ρTF)3/2 ∼ μ3/2, and thus Ewall ∼ N
3n/(2n+2)
k . The higher-order

corrections of O(�̄kρ
′
k/ρk) terms accidentally scale like the

kinetic energy. Thus, in a configuration with w domain walls,
the trial ground state has energy

E = UTF + wEwall + O

(
N

n−1
n+1
k

)
, (34)

where

UTF = ETF
(
ρTF

1 ,ρTF
2

)
(35)

is the energy of the TF densities.

IV. DOMAIN-WALL SUPPRESSION: A CASE STUDY

As an application of the previous results we consider in
this section the energy crossing between configurations with
different numbers of domain walls in a double-well potential.
We will consider a physical situation in which a crossing
between ground states with a maximal and a minimal number
of domain walls can be observed. We introduce an operational
way to control the crossing, based on a scaling property of the
TF energy functional, thus suggesting a possible experimental
realization.

Notice first that the effect of the kinetic energy on the ground
state of a mixture in a square-well potential is trivial, since in
this case the TF energy for separated configurations depends
only on the volumes occupied by the two species and not on
how they are distributed inside the well. Therefore, inclusion
of the domain-wall energy immediately enables us to identify
the configuration with a single domain wall as the ground state.

The situation is much more interesting for potentials that
vary over the region occupied by the mixture. In the TF theory,
density profiles with a maximal number of domain walls are
usually energetically favored, especially when the ratio of the
self-interaction coefficients is very close to 1 [29]. However,
the inclusion of the kinetic energy can drastically change this
picture. Each domain wall has an energetic cost, expressed by
Eq. (21), whose effect on the total energy decreases as the
numbers of particles increase. Thus, for very large number of
particles, the ground state is more likely to have a maximal
number of domain walls, but if the number of particles
decreases or the parameter α increases it can become more
convenient to reduce the number of walls.

As a test ground for the effectiveness of our method, let us
consider an example of this phenomenon, that was analyzed
by numerical integration of the coupled Gross-Pitaevskii sta-
tionary equations in Ref. [11]. The potentials are harmonic and
the possible competing ground states have one or two walls:
a mixture of 87Rb atoms with m1 = m2 = m = 1.45 × 10−25

kg in two hyperfine states was considered, with scattering
lengths a1 = 5.36 nm and a2 = 5.66 nm. The longitudinal
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TABLE I. Total energy of a binary mixture of 87Rb atoms in
a harmonic potential with longitudinal frequency ω = 2π × 90 Hz
and transverse frequency 30 times larger, for N1 = N2 = 2000 and
α = 1.18. The results obtained with the analytical approximation
schemes proposed in this article are compared with those numerically
obtained in Ref. [11].

One wall Two walls
(symmetry breaking) (symmetry preserving)

UTF 87.091 86.772
E = UTF + �E (w) 87.486 87.423
E numerically
computed in Ref. [11] 87.551 87.426

trapping frequency was fixed to ω = 2π × 90 Hz, with the
transverse trapping frequency 30 times larger. The authors
were able to build a phase diagram showing the crossing
between single- and double-wall configurations by applying
numerical techniques. An explicit comparison of the results
for the total energies of the configurations is given in Ref. [11]
for N1 = N2 = 2000 and α = 1.18.

In Table I we compare our results with those of Ref. [11]. It
is manifest that, while for the symmetry-preserving (double-
wall) state the two results are identical up to the fourth
significant digit, our regularization method enables us to
attain a stricter upper bound for the ground-state energy of
the symmetry-breaking (single-wall) configuration. Since the
choice of the trial densities in the energy functional is based
on the physics of the phenomenon, it is not surprising that our
analytical regularization technique, together with the exact
results coming from TF, leads to a better approximation of the
ground state of a binary mixture than the accurate numerical
integration of the coupled Gross-Pitaevskii equations [11].

The approximation on the energy of the trial densities
was proved to be robust by a numerical check, in which the
total energy of the regularized TF profiles is computed by
numerical integration, showing only a slight increase in the
fifth significant digit. The differences in the estimate of the
ground-state energy of the symmetry-breaking configurations,
which are general and not restricted to the aforementioned
case, lead to a different phase diagram in the plane (N1 =
N2 = N,α), shown in Fig. 5, that should be compared with that
in Fig. 2 of [11]. In our case the transition line is shifted by a
factor of 	1.5 with respect to the N axis (towards larger values
of N ). Thus, according to our analysis, the symmetry-breaking
ground state is present in a larger region of the (N,α) plane,
where it was previously not expected.

A. Scaling properties

It is convenient to study the scaling properties of the energy
terms in Eq. (2) under a dilation. If lengths scale as x → x/a

with a > 0, it is easy to see from Eqs. (3) and (4) that the
kinetic energies scale as Tk → Tk/a, while the potential and
interaction energies scale as Vk → aVk and U → aU , and
accordingly the numbers of particles scale as Nk → aNk .
Therefore, the larger a and the numbers of particles, the smaller
the ratio between kinetic and potential energy. Let us look at
this property in more details.

500 1000 5000 10000
1.0

1.5

2.0

N

α

FIG. 5. (Color online) Ground-state phase diagram in the N -α
plane for a binary mixture of 87Rb atoms in a harmonic potential
with longitudinal frequency ω = 90 Hz and transverse frequency 30
times larger. In the light gray region (yellow in the online version)
the ground state is a symmetry-preserving configuration with two
domain walls, while in the dark gray region (red in the online version)
a symmetry-breaking configuration, with a single domain wall, is
energetically favored.

Consider TF density profiles ρTF
k in a separated configura-

tion given by Eq. (7) and fix their supports by choosing the
number w of domain walls and their positions Rj , all satisfying
V (Rj ) = v with v a constant value. Let the density profiles be
normalized to Nk . The TF potential energy of the separated
configuration reads

UTF(Nk,V,w) =
∑
k=1,2

∫
�k

dx

[
V (x)ρTF

k (x) + Ukk

2
ρTF

k (x)2

]
.

(36)

The integration domains �k = �k({Rj },{P (k)
j }) are unions

of intervals whose ends are domain walls or edges, located
at {Rj } = V −1({v}) and {P (k)

j } = V −1({μk}), respectively.
Observe now that, if the potential is scaled as

W (x) = V (x/a), (37)

while leaving unchanged the chemical potentials μk and
the domain-wall potential v, the density profiles σ TF

k (x) =
ρTF

k (x/a) are still TF solutions, corresponding to the potential
W , to supports a�k = �k({aRj },{aP

(k)
j }), and to numbers of

particles ∫
a�k

dy σ TF
k (y) = a

∫
�k

dxρTF
k (x) = aNk. (38)

Moreover, the energy of the scaled configuration is related to
the previous one by

UTF(aNk,W,w) = a UTF(Nk,V,w). (39)

On the other hand, the energy contribution of the domain
walls is unchanged by the scaling, since it depends only on
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fixed quantities, namely, the number of walls, the chemical
potentials, and the domain-wall potential.

B. Energy crossing

Let us consider for definiteness a physical system with
equal numbers N0 of particles of the two species in a potential
V , with w domain walls, potential energy UTF(N0,V ,w), and
total domain-wall correction �E (w), proportional to w. If the
numbers of particles are increased to N = aN0 with a > 1 and
the potential is stretched to V (xN0/N ), the TF energy of the
new configuration reads

UTF

(
N,V

(
x

N0

N

)
,w

)
= N

N0
UTF(N0,V (x),w), (40)

while the domain-wall contributions remain the same. We can
conveniently consider N0 such that the bulk kinetic energy
and the energy corrections due to the zeros of the density
profiles are negligible with respect to both the TF energy and
the domain wall energy. A fortiori, they will be negligible for
all N > N0, since the bulk kinetic energy scales like N0/N .

We consider now an alternative configuration, in which
the number of domain walls is w′. The potential energy
UTF(N,V (xN0/N ),w′) obeys the same scaling law [Eq. (40)].
If a crossing between the total energies of the configurations
exists, it occurs for a number of particles

N∗
w,w′ (α) = N0

�E (w)(α) − �E (w′)(α)

UTF(N0,V (x),w′) − UTF(N0,V (x),w)
, (41)

which is meaningful only if the differences of the potential
energies and of the domain wall-corrections have opposite
signs. Furthermore, physical meaning can be attributed to
the crossing only if N∗

w,w′ � N0, since the validity of TF
approximation is not assured for N < N0.

Binary mixtures of 87Rb atoms are experimentally available
[5,9], with mass m1 = m2 = m = 1.45 × 10−25 kg, in states
|F = 1,mF = +1〉 and |F = 2,mF = −1〉, whose s-wave
scattering lengths are, respectively, a1 = 5.36 nm and a2 =
5.66 nm. The interspecies scattering length a12 is tunable
by approaching a Feshbach resonance [31] (see [4,5,9] for
experimental realizations). Let us suppose that such a mixture
is confined in a deformed harmonic trap, with a longitudinal
frequency ω� = 2π × 0.7 Hz, corresponding to a trapping
length a� = √

h̄/(mω�) = 1.29 × 10−5 m and a transverse
frequency ω⊥ = 500 ω�, such that a⊥ = a�/(10

√
5). Since

we want the transverse degrees of freedom to be frozen,
the number of particles per species N0 has to satisfy N0 �
a2

�/(a⊥ min(a1,a2)) 	 5 × 104. Moreover, in order to ensure
the applicability of one-dimensional TF approximation, the
condition N0 � a2

⊥/(a� max(a1,a2)) 	 10 must hold [17]. A
good choice is then N0 = 5 × 103. It is readily verified that
if the potential is (longitudinally) scaled as in Eq. (37), the
assumption of one-dimensionality and the TF approximation
continue to be valid. The one-dimensional self-interaction
parameters read

Ukk = 2h̄2ak

mka
2
⊥

, (42)

and their ratio U11/U22 = a1/a2 is very close to 1.

1 2 30123

1

2

3

x 10 4m

10
7 m

1

(a) u = 180.8, δ = 11304.2

1 2 30123

1

2

3

x 10 4m

10
7 m

1
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(g) u = 181.6, δ = 563.8

FIG. 6. (Color online) Lowest-energy configurations in the
double-well potential Eq. (43), for N0 = 5 × 103 and α = 2. In all
figures the (linear) densities of species 1 (solid red line) and species 2
(black dashed line) are plotted vs the linear coordinate x. Below each
figure, u = U(N0,V ,w)/N0 is the TF potential energy per particle,
while δ is the specific energy of the domain walls as in Eq. (26), both
in units h̄ω�.

In order to obtain a double well in the region where the
condensates are trapped, we add to the longitudinal harmonic
potential a cosine potential, so that

V (x) = mω2
�

2
x2 + A cos(Bx), (43)

with A/(h̄ω�) = 107.75 and Ba� = 6.44 × 10−16.
The TF stationarity condition Eq. (8), together with the

normalization conditions, is satisfied by the seven different
configurations represented in Fig. 6, together with their TF and
domain-wall energies. The number of domain walls ranges
from 1 to 4. The configuration with four domain walls and
with the less-self-interacting species placed in the minima of
the external potential is, as expected, the minimizer of the TF
energy. However, its domain-wall energy is much larger than
that of the configuration with a single domain wall, where each
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FIG. 7. (Color online) Ground-state phase diagram for a mixture
with equal number of atoms N1 = N2 = N in the potential V (x)
of Eq. (43). In the light gray region (yellow in the online version)
configurations with the maximal number of walls are energetically
favored, while in the dark gray region (red in the online version)
the ground state has a single domain wall. The (blue) transition line
represents the function N∗

1,4(α).

condensate occupies one well. For instance, α = 2 yields,
according to definition Eq. (41), N∗

1,4(2) = 1.4 × 104. We
have observed that for all α the only competing ground states
are the aforementioned configurations, with one and four
domain walls. The four-wall profile is the ground state only
for N > N∗

1,4(α), while for smaller N the one with a single
domain wall is energetically favored. In Fig. 7 the ground-state
phase diagram is displayed. The transition line is the graph of
the function

N∗
1,4(α) ∝ 	α[η̄(α)] (44)

and gives direct information about the function 	α[η̄(α)].
Thus, using Eqs. (21) and (24), the ground-state phase diagram
can be used to obtain information about the domain-wall
energies and the optimal penetration lengths.

V. CONCLUSIONS AND OUTLOOK

We discussed a variational method that yields a very good
approximation for the total energy of a binary mixture of
Bose-Einstein condensates in a separated configuration. The
method is reliable and accurate. We have seen that, in some
cases, density profiles with a large number of domain walls
can be energetically favored with respect to those with fewer
domain walls, in particular when the interaction ratio α is
close to 1. At present, there is a variety of methods to find ap-
proximate solutions to the Gross-Pitaevskii equations, ranging
from analytical techniques [32] to numerical ones, including
imaginary-time schemes [33,34] and finite-difference methods
[35–37]. It is worth emphasizing that our approach is not aimed
at solving the Gross-Pitaevskii equations in the most general
cases, but is rather optimized at uncovering the ground-state
properties of the mixture, with minimal numerical help. This
enables us to give an immediate physical interpretation of the
results and makes it possible to explain in very general terms
the observed phenomena, to predict new ones, and possibly to
develop more refined techniques in order to extend the validity
of our approximations.

All results are analytical and therefore provide solid ground
to improve the approximations. Indeed, starting from Eq. (21)
and from previously obtained TF results [29], it is possible
to compute, for example, corrections due to the first (finite)
derivatives of the potentials, as well as possible domain-
wall displacements and small variations of the chemical
potentials.

The results obtained in this paper can have practical appli-
cations. For example, if one compares an experimental phase
diagram with the theoretical prediction, physical properties
of the mixture can be estimated from the transition line,
that depends on the ratio of the masses and the interaction
parameters. These results can also help in analyzing dynamical
phenomena, such as vortices and solitons, which mostly appear
as perturbations of a stationary background, and lead to very
subtle energy changes (see, e.g., [16,38,39]): in order to
correctly analyze these changes, an accurate estimate of the
background energy is needed.
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