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Bipartite entanglement between two parties of a composite quantum system can be
quantified in terms of the purity of one party and there always exists a pure state of the
total system that maximizes it (and minimizes purity). When many different bipartitions

are considered, the requirement that purity be minimal for all bipartitions gives rise to
the phenomenon of entanglement frustration. This feature, observed in quantum systems
with both discrete and continuous variables, can be studied by means of a suitable cost
function whose minimizers are the maximally multipartite-entangled states (MMES). In
this paper we extend the analysis of multipartite entanglement frustration of Gaussian
states in multimode bosonic systems. We derive bounds on the frustration, under the
constraint of finite mean energy, in the low- and high-energy limits.
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1. Introduction

The development of quantum information theory and technologies has stimulated
and motivated the scientific efforts toward the full characterization of the geometry
of the set of states of quantum systems [1–4]. For both fundamental and techno-
logical reasons, the interest has been focused on the characterization of entangled
states, that is, those states of a composite system exhibiting nonclassical correla-
tions among their parties. While the case of bipartite systems has been extensively
studied and — at least for pure states — is nowadays well understood [5], the case
of genuinely multipartite entanglement is still not fully mastered.

The present contribution deals with the problem of multipartite-entanglement
characterization by focusing on the phenomenon of entanglement frustration [6]. In
particular, we will explore Gaussian states of continuous variable (CV) systems, that
is, systems of (quasi-free) quantum harmonic oscillators [7]. Specifically, we consider
a suitable cost function, the potential of multipartite entanglement, introduced in
[8, 9] and extended to the Gaussian framework in [10], as a quantifier of frustration.
The fact that this cost function cannot saturate its minimum value is a symptom
of a sort of frustration of entanglement, induced by the geometry of the quantum
phase space, which prevents the states to be maximally bipartite-entangled among
all possible system bipartitions. Here we consider a family of entanglement cost-
functions, generalizing the one introduced in [10]. We hence derive new results on
their minima in the low- and high-energy limits.

2. Gaussian Entanglement

Our analysis focuses on a system of n quantum harmonic oscillators, namely a set
of n bosonic modes, described by the canonical variables X = (X1, X2, . . . , X2n) :=
(q1, q2, . . . , qn, p1, p2, . . . , pn). For the sake of simplicity, we assume all oscillators
to be identical, although distinguishable, with unit frequency, and set � = 1. We
follow [10] and consider the manifold of Gaussian states of the n-mode system. Let
us recall that a Gaussian state ρ is characterized by the first and second moments
of the canonical variables, that is, the mean 〈X〉 := tr(ρX), and the covariance
matrix (CM) V, with elements Va,b = 1

2 〈XaXb + XbXa〉. We assume, without loss
of generality, 〈X〉 = 0, and restrict our attention to pure states. The CM of a pure
state can be written in the form

V =
1
2

RT
2
R

T, T =

(
K O

O K−1

)
, R =

(
X Y

−Y X

)
, (2.1)

where K is diagonal and nonsingular, O denotes the null matrix, and R is a symplec-
tic orthogonal matrix, characterized by the property that U = X + iY is unitary.
Finally, we impose a bound on the mean energy per mode, that is,

Vk,k + Vn+k,n+k

2
≤ N +

1
2
, ∀ k = 1, . . . , n, (2.2)
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with N the number of mean excitations per mode. This is one of a number of phys-
ical constraints that must be imposed on the system in order to make the problem
mathematically (and physically) well posed. A different approach to entanglement
frustration, that makes no use of energy constraints, has been proposed in [11].

We consider purity as an estimator of bipartite entanglement [8–10]. Given a
bipartition into two subsystems {A, Ā}, associated with two subsets of respec-
tively |A| = nA and |Ā| = nĀ bosonic modes (nA + nĀ = n), the purity of the
subsystems reads

πA = πĀ =
(1/2)nA

√
det VA

, (2.3)

where VA is the sub-matrix of the CM identified by the indices belonging to subsys-
tem A. Here we have assumed without loss of generality nA ≤ nĀ. It can be easily
proven that under the constraint (2.2) the minimum value of the purity is [10]

πmin
nA

(N) =
(1/2)nA

(N + 1/2)nA
. (2.4)

The range of the purity is πA ∈ [πmin
nA

(N), 1], where the value 1 characterizes factor-
ized states, and the value πmin

nA
(N) characterizes those states which are maximally

bipartite-entangled across the bipartition considered. Note that for an unconstrained
system (N → ∞) the minimal purity (2.4) vanishes.

2.1. Entanglement frustration in multimode systems

In order to study multipartite entanglement we introduce the normalized potential
of multipartite entanglement, a cost function defined for any pair (n, nA) by the
(normalized) expectation value E of the purity over all possible bipartitions of
given size:

χ(n,nA)(N) : =
1

πmin
nA

(N)
E[πA] =

(
n

nA

)−1 ∑
|A|=nA

πA

πmin
nA

(N)

= (N + 1/2)nAE[det(VA)−1/2]. (2.5)

The range of the cost function is contained in the interval [1, 1/πmin
nA

(N)], where the
lower bound characterizes the so-called perfect MMES (Maximally Multipartite-
Entangled States) [10], which are maximally bipartite-entangled across all biparti-
tions of size nA. However, as shown in [10], the geometry of the manifold of CV
Gaussian states makes it impossible for the minimum of the cost function to satu-
rate the lower bound, i.e.

χmin
(n,nA)(N) := minχ(n,nA)(N) > 1, (2.6)

a feature that is interpreted as frustration of entanglement.
Numerical results for the case of balanced bipartitions (nA = [n/2]) were pre-

sented in [10]. Figure 1 shows the behavior of χmin
(n,nA) as a function of N for
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Fig. 1. Left: minimum of the normalized potential of multipartite entanglement χmin
(n,[n/2])

versus

number of excitations per mode N , for n = 4, 5, 6, 7, 8, 9. Right: same minimum in the case of
unbalanced bipartitions χmin

(n,2)
versus N , for n = 4, 5, 6, 7, 8, 9. In the region N � 1 the minimum

value is linear in N , while it reaches a plateau for N � 1. See Sec. 3 for details.

nA = [n/2], and for nA = 2 < [n/2]. χmin
(n,nA)(N) appears to be a monotonic function

of N . Two limiting regimes are identified, corresponding to N 	 1 and N 
 1: in
the former case we notice a linear regime for increasing values of N ; in the lat-
ter, χmin

(n,nA) saturates to a constant that depends on the value of n. Moreover,
χmin

(n,nA)(N) appears to be a decreasing function of n for a given nA < [n/2], while
for nA = [n/2] it increases with n, although oscillating between even and odd n.

More generally, frustration — which is naturally quantified by χmin
(n,nA)(N) —

decreases with n at fixed nA, and increases with n if nA scales linearly with n (e.g.
for balanced bipartitions). This behavior of frustration in CV Gaussian states is
analogous to that observed in discrete-variable quantum systems [6].

3. Bounds on Entanglement Frustration in Gaussian States

In order to estimate the bounds on χmin
(n,nA)(N), we restrict our attention to states

such that K = erIn (same squeezing for all modes), whose CM reads

V =
e2r

2

(
XXT −XYT

−YXT YYT

)
+

e−2r

2

(
YYT YXT

XYT XXT

)
, (3.1)

or, equivalently,

V =
cosh(2r)

2
I2n +

sinh(2r)
2

(
XXT − YYT −XYT − YXT

−YXT − XYT YYT − XXT

)
. (3.2)

The energy constraints read

cosh(2r) ≤ 2N + 1. (3.3)

In the following we denote respectively by χ̃(n,nA) and χ̃min
(n,nA) the normalized poten-

tial of multipartite entanglement and its minimum evaluated for this family of
states.
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3.1. The linear regime, N � 1

From Eq. (3.2) we get

χ̃(n,nA) = (2N + 1)nAE[det(cosh(2r)InA + sinh(2r)ZA)−1/2],

where we defined

Z :=

(
XXT − YYT −XYT − YXT

−YXT − XYT YYT − XXT

)
, (3.4)

and ZA denotes the sub-matrix corresponding to the subset of modes A. Then,

χ̃(n,nA) =
(

2N + 1
cosh(2r)

)nA

E[det(InA + tanh(2r)ZA)−1/2]

≥ E[det(InA + tanh(2r)ZA)−1/2], (3.5)

where the inequality follows from the energy constraint, and it is saturated when
cosh 2r = 2N + 1.

In the limit N 	 1, we use the second-order expansion of the determinant,

det(I + εM) = 1 + ε tr(M) +
ε2

2
tr(M)2 − tr(M2)

2
+ O(ε3). (3.6)

By setting cosh 2r = 2N + 1, and noticing that tr(ZA) = 0, we get

E[det(InA + tanh(2r)ZA)−1/2] = 1 + NE[tr(Z2
A)] + O(N3/2). (3.7)

Finally we obtain the upper bound

χmin
(n,nA)(N) ≤ χ̃min

(n,nA)(N) ≤ 1 + N min{E[tr(Z2
A)]}. (3.8)

It is worth noticing that the evaluation of the upper bound still requires a con-
strained minimization, which is now independent of N . In conclusion, in the region
N 	 1, the minimum χmin

(n,nA)(N) is bounded from above by a linear function of N .
The value of the slope

α̃(n,nA) := min{E[tr(Z2
A)]} (3.9)

has been obtained numerically, for several values of n, and is presented in Table 1.
A comparison with the numerical estimation of

α(n,nA) := lim
N→0

∂χmin
(n,nA)(N)

∂N
, (3.10)

also reported in Table 1, leads to conclude that the bound is tight.
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Table 1. Numerical estimates of the slopes α(n,nA) in Eq. (3.10),
α̃(n,nA) in Eq. (3.9), of the minimum of the normalized poten-

tial of multipartite entanglement for N = 10, χmin
(n,[n/2])

(N = 10)

[which approximates limN→∞ χmin
(n,[n/2])

(N)], and of the upper

bound β(n,nA) in Eq. (3.13). The results are obtained for the case
of balanced bipartitions, nA = [n/2].

n α(n,[n/2]) α̃(n,[n/2]) χmin
(n,[n/2])

(N = 10) β(n,[n/2])

4 1.33 1.333333 1.663650 1.666667
5 1.00 1.000000 1.332326 1.333333
6 2.40 2.400000 2.780918 2.795085
7 2.00 2.000000 2.203228 2.213586
8 3.43 3.428571 5.980689 6.074700
9 3.00 3.000000 3.470522 3.491497

3.2. Saturation, N � 1

Let us rewrite Eq. (3.1) as

V =
e2r

2
(W + e−4r

W
′), W :=

(
XXT −XYT

−YX
T

YY
T

)
, W

′ :=

(
YYT YXT

XY
T

XX
T

)
.

We thus obtain

χ̃(n,nA) =
(N + 1/2)|A|

(e2r/2)|A| E[det(WA + e−4r
W

′
A)−1/2]

≥ (N + 1/2)|A|

(2N + 1 − e−2r/2)|A|E[det(WA + e−4r
W

′
A)−1/2], (3.11)

where WA, W′
A are respectively sub-matrices of W, W′. Notice that inequality

(3.11) is saturated if cosh 2r = 2N + 1.
In the limit N 
 1 (i.e. e−r 	 1), we get

χ̃(n,nA) ≥ 2−nAE[det(WA)−1/2] + O(e−2r). (3.12)

Then, by setting cosh 2r = 2N + 1, we obtain the upper bound

χmin
(n,nA)(N) ≤ χ̃min

(n,nA) ≤ 2−nA min{E[det(WA)−1/2]} =: β(n,nA). (3.13)

Note that, also in this case, the evaluation of the right-hand side of this inequality
requires a constrained minimization, now independent of the energy parameter N .
Equation (3.13) implies that the minimum χmin

(n,nA)(N) is bounded from above in
the N → ∞ limit. The upper bound on the left-hand side of (3.13) can be eval-
uated numerically. Table 1 shows a comparison between the values of χmin

(n,nA)(N),
evaluated for N = 10 (where the saturation regime has been reached of all val-
ues of n considered), and the numerical estimates of β(n,nA). Numerical evidence
suggests that the upper bound is approached in the N → ∞ limit. Comparison
with Eq. (2.6) yields then a concrete estimate for the amount of frustration in the
system.
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4. Conclusions

We have presented some results on entanglement frustration in multimode Gaussian
states, quantified by the minimum value of the normalized potential of multipartite
entanglement. Entanglement frustration arises from the impossibility for a mul-
timode Gaussian state of being maximally bipartite-entangled across all possible
bipartitions of the system. It has been proven in [10] that entanglement frustration
appears in multimode Gaussian states if nA ≥ 2, while for qubits — for the case of
balanced bipartition (nA = [n/2]) — it appears for n = 4, n ≥ 8 (the case n = 7 is
still under debate [8, 9, 12–15]).

The results obtained in this note extend the numerical analysis presented in [10],
and put it on a more solid basis, by virtue of the semi-analytical calculation of the
upper bounds in the low- and high-energy regimes. Our numerical analysis suggests
that these bounds are tight. In particular, the calculation of a finite upper bound in
the high-energy regime demonstrates that entanglement frustration remains finite
in the N → ∞ limit.

We emphasize that in this article frustration is quantified in terms of the ratio
between purity and its minimum value πmin

nA
(N), given in Eq. (2.4). Even though

purity vanishes in the N → ∞ limit, the limiting ratio limN→∞ χmin
(n,nA)(N) is

strictly larger than 1, signaling frustration. The presence of frustration is therefore
not in contradiction with the existence of states with vanishing purity and maximal
rank for all bipartitions [11].

The results of the numerical analysis show a certain regularity in the estimates
of the parameter α(n,nA). The numerical estimates reported in Table 1 suggest
conjecturing the following relations:

α(2nA+1,nA) = nA − 1, α(2nA,nA) =
2nA

2nA − 1
α(2nA+1,nA). (4.1)

We remark that the upper bounds are obtained by an optimization over the matrices
R in Eq. (2.1), which have the property of being both symplectic and orthogonal,
and hence define a representation of the unitary group U(n) (see, e.g. [16]). These
observations suggest that the employment of group-theoretical methods could lead
to deeper insight into the phenomenon of entanglement frustration in multimode
Gaussian states.
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