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Abstract

We outline some simple prescriptions to define a distribution on the set Q0 of
all the rational numbers in [0, 1], and we then explore both a few properties
of these distributions, and the possibility of making these rational numbers
asymptotically equiprobable in a suitable sense. In particular it will be shown
that in the said limit – albeit no uniform distribution can be properly defined
on Q0 – the probability allotted to a single q ∈ Q0 asymptotically vanishes,
while that of the subset of Q0 falling in an interval [a, b] goes to b−a. We finally
give some hints to completely sequencing without repetitions the numbers in
Q0 as a prerequisite to the laying down of more distributions on it
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1 Introduction

What could the locution taking at random possibly mean? In its most general sense
this would indicate that the drawing of an outcome ω out of a set Ω is made according
to any arbitrary (but legitimate) probability measure assigned on the subsets of Ω,
and then that the usual precepts of the probability theory are followed with the
result that different probabilities are normally allocated to distinct subsets of Ω.
Traditionally however the meaning of the said locution is more circumscribed and
stands rather for assuming that there is no reason to think that there are preferred
outcomes ω ∈ Ω, these being supposed instead to be equally likely. This will be the
meaning that we will be interested in all along this paper, or – whether this notion
will not be exactly applicable – an asymptotic version of it in some acceptable
limiting sense

It is well known indeed that for the sets of real numbers our kind of randomness

is enforced either by sheer equiprobability (on the finite sets), or by distribution uni-

formity (on the bounded, Lebesgue measurable, uncountable sets). On the other
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hand infinite, countable sets and unbounded, uncountable sets are both excluded
from these egalitarian probability attributions because their elements can be made
neither equiprobable (with a non vanishing probability), nor uniformly distributed
(with a non vanishing probability density). In these occasions it is advisable instead
to start with some proper (neither equiprobable, nor uniform) probability distribu-
tion, and then to inquire if and how this can be made ever closer – in a suitable,
approximate sense – either to an equiprobable or to an uniform one: we will then
respectively speak of asymptotic equiprobability and asymptotic uniformity

The focus of our present inquiry, as will be elucidated in the Section 2, are the
rational numbers that – even in a bounded interval – constitute an infinite, countable
set, with a few relevant, additional peculiarities due to their being also everywhere
dense among the real numbers. In the Section 3 we will then supply a procedure
to attribute non vanishing probabilities to every rational number q = n/m in the
interval [0, 1]. The Section 4 is instead devoted to the aftermaths of supposing
conditionally equiprobable numerators n, and then the Section 5 will show under
which hypotheses our distributions can give rise to an asymptotic equiprobability of
the rationals in [0, 1] such that – without pretending to have a uniform distribution
on Q0 – the probability allotted to a single q ∈ Q0 vanishes in the limit, while that
of the subset of Q0 falling in an interval [a, b] goes to b − a. Several examples of
denominator distributions are elaborated in the Section 6 giving rise to a few closed
formulas, and finally in the Section 7 some concluding remarks are added with a
glimpse on the open problem of sequencing all the rational numbers in Q0

2 Probability on rational numbers

Rational numbers are famously countable, and hence they can be put in a sequence.
Since however they are a dense subset of the real numbers, every rational number is
a cluster point, and hence no sequence encompassing all of them can ever converge,
not to say be monotone. In any case their countability certainly allows the allotment
of discrete distributions with non vanishing probabilities for every rational number:
since they are infinite, however, they can never be exactly equiprobable. We will
outline in the forthcoming sections a simple procedure to give distributions on the
rationals in [0, 1], a set that we will shortly denote as Q0 = Q ∩ [0, 1], and we will
investigate if and how they can be considered asymptotically equiprobable. We will
refrain instead for the time being from extending our considerations to the whole of
Q only because in our opinion this – at the present stage of the inquiry – would not
add particular insights to our discussion

It is however advisable to assert right away that the distribution of a rv (ran-
dom variable) Q taking values in Q0 must anyhow be of a discrete type, allotting
(possibly non vanishing) probabilities to the individual rational numbers q ∈ Q0:
conceivable continuous set functions – namely with continuous, albeit perhaps not
absolutely continuous, cdf (cumulative distribution function) – would turn out to
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be not countably additive, and hence would not qualify as measures, not to say as
probability distributions. Every continuous cdf for Q would indeed entail that at
the same time P {Q = q} = 0, ∀q ∈ Q0, and P {Q ∈ Q0} = 1, while Q0 apparently
is the countable union of the disjoint, negligible sets {q}: in plain conflict with the
countable additivity. This in particular rules out for the numbers in Q0 also the
possibility of being in some sense uniformly distributed (an imaginable surrogate
of equiprobability suggested by the rationals density): this property would in fact
require for Q a cdf of the uniform type

FQ(x) = P {Q ≤ x} =







0 x < 0
x 0 ≤ x < 1
1 1 ≤ x

which is apparently continuous, and would hence attribute probability 0 to every
single q, but probability 1 to Q0

We would like to stress, moreover, that the problem focused on in the present
paper is not how to realistically produce – possibly equiprobable – rational numbers
at random: this would be performed in a trivial way, for instance, just by taking ran-
dom, uniformly distributed real numbers, and then by truncating them to a prefixed
number n of decimal digits, as always done in practice in every computer simula-
tions of random numbers in [0, 1]. It is apparent however that in so doing we would
shrink Q0 to a finite set of rational numbers (they would be exactly 10n + 1) that
could always be made exactly equiprobable, failing instead to allot a non vanishing
probability to the remaining, overwhelmingly more numerous, elements of Q0. The
aim of our inquiry is instead to find a sensible way to attribute (non vanishing, and
possibly not too different from each other) probabilities to every rational number in
Q0, their practical simulation being considered here but an eventual side effect of
this allocation

Remark that one could be lured to think that a way around the previous snag
could consist in drawing again uniformly distributed real numbers, yet truncating
the decimal digits to some random number N taking arbitrary, finite but unbounded
integer values. Even in this way, however, not every rational number would have
a chance to be produced: the said procedure would indeed a priori exclude all the
(infinitely many) rational numbers with an infinite, periodic decimal representation,
as for instance 1/3,

2/3, . . . and so on. In the light of this preliminary scrutiny the
best way to tackle the task of laying down a probability on Q0 seems then to be to
exploit the fractional representation q = n/m of every rational number by attributing
some suitable joint distribution to its numerators and denominators



N Cufaro Petroni: Random rational numbers 4

n
m 0 1 2 3 4 5 6 7 8 . . .
1 0 1
2 0 1/2 1
3 0 1/3

2/3 1
4 0 1/4

2/4
3/4 1

5 0 1/5
2/5

3/5
4/5 1

6 0 1/6
2/6

3/6
4/6

5/6 1
7 0 1/7

2/7
3/7

4/7
5/7

6/7 1
8 0 1/8

2/8
3/8

4/8
5/8

6/8
7/8 1

...
...

. . .

Table 1: Table of rational numbers q = n/m with repetitions: many fractions are
reducible to canonical forms already present in earlier positions

3 Distributions on Q0

Taking advantage of the well known diagram used to prove the countability of the
rational numbers, we will consider two dependent rv ’s M and N with integer values

m = 1, 2, . . . n = 0, 1, 2, . . . , m

and acting respectively as denominator and numerator of the random rational num-
ber Q = N/M ∈ [0, 1]. As a consequence Q will take the values q = n/m arrayed
in a triangular scheme as in Table 1. It is apparent however that in this way every
rational number q shows up infinitely many times due to the presence of reducible
fractions: for instance – with the usual notation for repeating decimals – we have

0.5 = 1/2 =
2/4 =

3/6 = . . . 0.3 = 1/3 =
2/6 = . . . 0.75 = 3/4 =

6/8 = . . .

and hence, to avoid repetitions, the rational numbers in [0, 1] should rather be listed
with blanks as in Table 2. While always possible in principle, however, it would be
uneasy to assign probabilities directly to the elements of the said Table 2: there is
in fact no simple way to attribute a progressive index to them (what for instance is
the 1 000th element?) since the numbers νm of the different rationals in every row
sharing a common irreducible denominator m constitute a rather irregular sequence,
as we will briefly discuss in the Section 7. As a consequence it is advisable to take
advantage of the complete Table 1 by introducing a joint distributions of N and M

P {M = m} m = 1, 2, . . .

P {N = n |M = m} n = 0, 1, 2, . . . , m

P {N = n,M = m} = P {N = n |M = m} P {M = m}
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n
νm m 0 1 2 3 4 5 6 7 . . .
2 1 0 1
1 2 1/2
2 3 1/3

2/3
2 4 1/4

3/4
4 5 1/5

2/5
3/5

4/5
2 6 1/6

5/6
6 7 1/7

2/7
3/7

4/7
5/7

6/7
4 8 1/8

3/8
5/8

7/8
...

...
...

. . .

Table 2: Table of rational numbers q
.
= n/m without repetitions: only irreducible

fractions are represented, along with the number νm of the different rationals sharing
a common irreducible denominator m

For a rational number q we will also adopt the notation

q
.
= n/m

to indicate that n/m is the irreducible representation of q, namely that n and m are
co-primes: for instance in the previous examples it will be

0.5
.
= 1/2 0.3

.
= 1/3 0.75

.
= 3/4

For every rational q
.
= n/m we will then have the discrete distribution

P {Q = q} =
∞
∑

ℓ=1

P {N = ℓn,M = ℓm}

=
∞
∑

ℓ=1

P {N = ℓn |M = ℓm} P {M = ℓm} (1)

which gives a probability to every rational number 0 ≤ q ≤ 1. This also allows to
define the cdf of Q as (here of course x ∈ R)

FQ(x) = P {Q ≤ x} = P {N ≤ Mx} =
∞
∑

m=1

P {N ≤ mx |M = m}P {M = m}

=
∞
∑

m=1

FN(mx|M = m)P {M = m} (2)

and hence also the probability of Q falling in (a, b] for 0 ≤ a < b ≤ 1 real numbers:

P {a < Q ≤ b} = FQ(b)− FQ(a)

=
∞
∑

m=1

[

FN (mb|M = m)− FN (ma|M = m)
]

P {M = m} (3)
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Notice that the conditional cdf of N can also be given as

FN (x|M = m) = P {N ≤ x |M = m} =
m
∑

n=0

P {N = n |M = m}ϑ(x− n)

=

⌊x⌋
∑

n=0

P {N = n |M = m} (4)

where

ϑ(x) =

{

1 x ≥ 0
0 x < 0

is the Heaviside function, while for every real number x, the symbol ⌊x⌋ denotes the
floor of x, namely the greatest integer less than or equal to x. As a consequence the
equations (2) and (3) also take the form

FQ(x) =
∞
∑

m=1

P {M = m}
⌊mx⌋
∑

n=0

P {N = n |M = m} (5)

P {a < Q ≤ b} =
∞
∑

m=1

P {M = m} (1− δ⌊ma⌋,⌊mb⌋)

⌊mb⌋
∑

n=⌊ma⌋+1

P {N = n |M = m}(6)

where the Kronecker delta takes into account the fact that when ⌊mb⌋ = ⌊ma⌋ the
term vanishes, so that ⌊mb⌋ ≥ ⌊ma⌋ + 1. We moreover have for the expectations
and the characteristic function

E [Q] = E
[

N/M
]

= E

[

1

M
E [N |M ]

]

=

∞
∑

m=1

P {M = m}
m

E [N |M = m] (7)

E
[

Q2
]

=
∞
∑

m=1

P {M = m}
m2

E
[

N2
∣

∣M = m
]

(8)

ϕQ(u) = E
[

eiuN/M
]

=
∞
∑

m=1

P {M = m}
m
∑

n=0

eiun/mP {N = n |M = m}

=

∞
∑

m=1

P {M = m}ϕN (u/m |M = m) (9)

where we also adopted the shorthand notation

ϕN (u |M = m) = E
[

eiuN |M = m
]

=
m
∑

n=0

eiunP {N = n |M = m}

The actual joint distributions of N and M can now be chosen in several ways, and
we go on now in the next sections to survey a few particular cases
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4 Equiprobable numerators

Let us suppose now for simplicity that for a given denominator m ≥ 1 the m + 1
possible values of the numerator n = 0, 1, . . . , m are equiprobable in the sense that

P {N = n |M = m} =
1

m+ 1
n = 0, 1, . . . , m

We then have (see [1] 0.121)

E [N |M = m] =

m
∑

n=0

n

m+ 1
=

1

m+ 1

m(m+ 1)

2
=

m

2

E
[

N2
∣

∣M = m
]

=

m
∑

n=0

n2

m+ 1
=

1

m+ 1

m(m+ 1)(2m+ 1)

6
=

m(2m+ 1)

6

and hence from (7) and (8)

E [Q] =

∞
∑

m=1

P {M = m}
m

m

2
=

1

2

∞
∑

m=1

P {M = m} =
1

2

E
[

Q2
]

=

∞
∑

m=1

P {M = m}
m2

E
[

N2|M = m
]

=

∞
∑

m=1

2m+ 1

6m
P {M = m}

=
1

3

∞
∑

m=1

P {M = m}+ 1

6

∞
∑

m=1

P {M = m}
m

=
1

3
+

1

6
E

[

1

M

]

V [Q] = E
[

Q2
]

−E [Q]2 =
1

12
+

1

6
E

[

1

M

]

As for the distribution, with n,m co-primes and 0 ≤ n ≤ m, from (1) we have

P {Q = q} =

∞
∑

ℓ=1

P {M = ℓm}
ℓm+ 1

q
.
= n/m (10)

which is apparently independent from n and is contingent only on the value of the
irreducible denominator m. The characteristic function (9) moreover is

ϕN (u |M = m) =
1

m+ 1

m
∑

n=0

eiun ϕQ(u) =

∞
∑

m=1

P {M = m}
m+ 1

m
∑

n=0

eiun/m
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while for the cdf (5) we have from (4)

FN (mx |M = m) =
1

m+ 1

m
∑

n=0

ϑ (mx− n) =







0 x < 0
⌊mx⌋+1
m+1

0 ≤ x < 1

1 1 ≤ x

FQ(x) =

∞
∑

m=1

P {M = m}
m+ 1

m
∑

n=0

ϑ (mx− n)

=







0 x < 0
∑

m≥1P {M = m} ⌊mx⌋+1
m+1

0 ≤ x < 1

1 1 ≤ x

(11)

and the probability (6) with 0 ≤ a < b ≤ 1 becomes

P {a < Q ≤ b} =

∞
∑

m=1

P {M = m} ⌊mb⌋ − ⌊ma⌋
m+ 1

(12)

It is apparent then that – but for the value of the expectation E [Q] = 1/2 – all these
quantities depend on the choice of the denominator distribution. That notwith-
standing we will show in the next section that, under reasonable conditions on the
denominators M , the distribution of Q can in fact be made as near as we want to
– but not exactly coincident with – a uniform distribution in [0, 1]: a behavior that
we dubbed asymptotic equiprobability

5 Asymptotic equiprobability

For the equiprobable numerators introduced in the previous section, and by denoting
for short as pm = P {M = m} the distribution of M , and as s = supm pm the
supremum of all its values, let us take now a sequence of denominators {Mk}k≥1

with distributions {pm(k)}k≥1, and with sk vanishing for k → ∞ in such a way that

lim
k

sk ln k = 0 (13)

In other words we consider a sequence of distributions that are increasingly (and
uniformly) flattened toward zero, so that the denominators too are increasingly
equiprobable. Ready examples of these sequences with k = 1, 2, . . . are for instance
that of the finite equiprobable distributions

pm(k) =

{

1/k m = 1, 2, . . . , k
0 m > k

where apparently sk =
1/k

k−→ 0 ; that of the geometric distributions

pm(k) = wk(1− wk)
m−1 m = 1, 2, . . .
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with infinitesimal wk so that sk = wk
k−→ 0 ; and finally that of the Poisson distri-

butions

pm(k) = e−λk
λm−1
k

(m− 1)!
m = 1, 2, . . .

with divergent λk, where again the modal values are infinitesimal: we know indeed

that a Poisson distribution attains its maximum in ⌊λk⌋+1, so that for λk
k−→ +∞

its modal value sk essentially behaves as (see [1] 8.327.1)

sk = e−λk
λλk−1
k

Γ(λk)
=

1√
2πλk

(

1 +O(λ−1
k )
)

k−→ 0

Lemma 5.1. Within the previous notations and conditions we have

µk = E
[

1/Mk

]

=
∞
∑

m=1

pm(k)

m

k−→ 0 (14)

Proof: The positive series defining µk is certainly convergent because

µk =

∞
∑

m=1

pm(k)

m
<

∞
∑

m=1

pm(k) = 1

and hence we can always write

µk =

∞
∑

m=1

pm(k)

m
=

k
∑

m=1

pm(k)

m
+Rk

where

Rk =
∞
∑

m=k+1

pm(k)

m

k−→ 0

is an infinitesimal remainder. Remark that now k plays both the roles of index of
the distribution sequence, and of series cut-off. On the other hand, under our stated
conditions

k
∑

m=1

pm(k)

m
< sk

k
∑

m=1

1

m
= skHk

where Hk denotes the kth harmonic number, namely the sum of the reciprocal inte-
gers up to 1/k: it is well known ([1] 0.131) that for k → ∞ the Hk grow as ln k, so

that from (13) we have skHk
k−→ 0, and finally µk = skHk +Rk

k−→ 0 �

Proposition 5.2. If Q = N/M and FQ(x) is its cdf , then, within the notation and

conditions outlined above, we have

lim
k

P {Q = q} = 0 lim
k

P {a < Q ≤ b} = b− a (15)

lim
k

FQ(x) =







0 x < 0
x 0 ≤ x < 1
1 1 ≤ x

(16)
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Proof: Since our series have positive terms the first result in (15) follows from (10)
and (14) because, with q

.
= n/j

P {Q = q} =
∞
∑

ℓ=1

pℓj(k)

ℓj + 1
<

∞
∑

m=1

pm(k)

m+ 1
<

∞
∑

m=1

pm(k)

m
= µk

k−→ 0

As for the second result in (15), since for every real number x it is x− 1 ≤ ⌊x⌋ ≤ x,
for every k = 1, 2, . . ., and 0 ≤ a < b ≤ 1, we have from (12)

∞
∑

m=1

pm(k)
m(b− a)− 1

m+ 1
≤ P {a < Q ≤ b} ≤

∞
∑

m=1

pm(k)
m(b− a) + 1

m+ 1

namely

b− a + (a− b− 1)

∞
∑

m=1

pm(k)

m+ 1
≤ P {a < Q ≤ b} ≤ b− a+ (a− b+ 1)

∞
∑

m=1

pm(k)

m+ 1

so that, since a− b− 1 ≤ 0 and a− b+ 1 ≥ 0, it is

b− a+ (a− b− 1)µk ≤ P {a < Q ≤ b} ≤ b− a+ (a− b+ 1)µk

The second result (15) follows then from (14). In a similar way we finally find
for (16) that

∞
∑

m=1

pm(k)
mx

m+ 1
≤ FQ(x) ≤

∞
∑

m=1

pm(k)
mx+ 1

m+ 1
0 ≤ x ≤ 1

namely

x− x
∞
∑

m=1

pm(k)

m+ 1
≤ FQ(x) ≤ x+ (1− x)

∞
∑

m=1

pm(k)

m+ 1

and hence
x− xµk < FQ(x) < x+ (1− x)µk

so that the result again follows from (14) �

From this proposition we see that in the limit k → ∞, while the probability of every
single rational number rightly vanishes, the probability of these numbers lumped
together in intervals does not: a behavior highly reminiscent of what happens to
continuously distributed real rv ’s. For the reasons presented in the Section 2, how-
ever, the previous result by no means imply that we can implement a uniform limit
distribution on Q0 (as we said, there is not such a thing), but it rather suggests
that our random rational numbers Q – at least for denominators m distributed in
a fairly flat way, and numerators n conditionally equiprobable between 0 and m –
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Figure 1: Probabilities attributed to rational numbers as a function of
the irreducible, geometrically distributed denominators m, and for decreasing
(0.9, 0.5, 0.1, 0.01, 0.001) values of w: by choosing different m intervals, the pictures
show how these probabilities level down to infinitesimal equiprobability for w → 0

asymptotically behave as uniformly distributed in [0, 1], and hence they quite rea-
sonably correspond to our intuitive idea of taking rational numbers at random. In
this perspective remark also that, under our conditions, we have for the variance

V [Q] =
1

12
+

1

6
E

[

1

M

]

=
1

12
+

µk

6

k−→ 1

12

again in agreement with an approximate uniform distribution in [0, 1]

6 Denominator distributions

6.1 Geometric denominators

A few closed formulas about the rv Q are available for particular denominator
distributions: let us suppose for instance that the denominator M be geometrically
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distributed as

P {M = m} = w (1− w)m−1 w > 0, m = 1, 2, . . .

In this case we first find

E [M ] =
1

w
E

[

1

M

]

=

∞
∑

m=1

w(1− w)m−1

m
=

w

1− w

∞
∑

m=1

(1− w)m

m
= −w lnw

1 − w

and hence

V [Q] =
1

12
− w lnw

6(1− w)

while for the cdf we do not go beyond its formal definition

FQ(x) =







0 x < 0
∑

m≥1w (1− w)m−1 ⌊mx⌋+1
m+1

0 ≤ x < 1

1 1 ≤ x

As for the Q distribution instead, taking q
.
= n/m, we find with j = ℓ−1 the analytic

expression

P {Q = q} =

∞
∑

ℓ=1

w(1− w)ℓm−1

ℓm+ 1
= w(1− w)m−1

∞
∑

ℓ=1

(1− w)m(ℓ−1)

ℓm+ 1

= w(1− w)m−1
∞
∑

j=0

(1− w)mj

m(j + 1) + 1

=
w(1− w)m−1

m+ 1
2F1

(

1, 1 + 1/m ; 2 + 1/m ; (1− w)m
)

(17)

where 2F1(a, b; c; z) is a hypergeometric function [1] that gauges the deviation of
P {Q = q} from the corresponding joint probability of N,M

P {N = n,M = m} =
w(1− w)m−1

m+ 1

This formula allows a graphic representation of P {Q = q} as a function of the
irreducible denominators m displayed in the Figure 1 where it is apparent how
the initial (m = 1) ordering of the probabilities (increasing with the w values going
from w = 0.001 to w = 0.9) becomes totally overturned for m large enough. Remark
that each value of the probability (17) should be understood as attributed to every
rational number with the same m as irreducible denominator, for instance (see
Table 2): for m = 1 we get the probability of q

.
= 0 and 1; for m = 2 the probability

of q
.
= 1/2 alone; for m = 3 that of q

.
= 1/3 ,

2 /3 ; for m = 4 that of q
.
= 1/4 ,

3 /4 ; . . .
and so on. This allows, in particular, to steer clear of an easy misunderstanding: it
must be noticed indeed that, while apparently

∞
∑

m=1

m
∑

n=0

P {N = n,M = m} =
∞
∑

m=1

m
∑

n=0

w(1− w)m−1

m+ 1
=

∞
∑

m=1

w(1− w)m−1 = 1
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Figure 2: Numerosity νm of the different rational numbers q
.
= n/m sharing a com-

mon, irreducible denominator m

we find instead

∞
∑

m=1

m
∑

n=0

w(1− w)m−1

m+ 1
2F1

(

1, 1 + 1/m ; 2 + 1/m ; (1− w)m
)

< 1

as can be seen from the fact that for 0 < w < 1

2F1

(

1, 1 + 1/m ; 2 + 1/m ; (1− w)m
)

{

= 1 m = 1
< 1 m = 2, 3, . . .

This however is not in contradiction with the mandatory requirement that

∑

q∈Q0

P {Q = q} = 1 (18)

precisely because – as previously remarked – the probability associated to an m
must be attributed to several different rational numbers q: if νm is the number of
rationals q that have m as its irreducible denominator, then we should rather pay
attention to ascertain the normalization in the form

∑

q∈Q0

P {Q = q} =
∞
∑

m=1

m
∑

n=0

νm
w(1− w)m−1

m+ 1
2F1

(

1, 1 + 1/m ; 2 + 1/m ; (1− w)m
)

=
∞
∑

m=1

νmw(1− w)m−1
2F1

(

1, 1 + 1/m ; 2 + 1/m ; (1− w)m
)

= 1
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Yet this result – that we can consider as secured by construction and definition –
is not easy to check by direct calculation because a closed form for the sequence
νm is not readily available: its behavior is indeed rather irregular, albeit on average
steadily growing, as can be seen from an empirical plot of its first values displayed
in the Figure 2. We postpone to the Section 7 a few additional remarks about this
point showing in particular how the previous normalization condition can instead
be used to sequentially calculate the values of νm

6.2 Poisson and equiprobable denominators

When on the other hand the denominators are distributed according to other (albeit
simple) laws we unfortunately no longer find elementary closed forms for P {Q = q}.
If the for instance M is Poisson distributed as

P {M = m} = e−λ λm−1

(m− 1)!
λ > 0, m = 1, 2, . . .

we find E [M ] = 1 + λ and

E

[

1

M

]

=

∞
∑

m=1

e−λ

m

λm−1

(m− 1)!
=

e−λ

λ

∞
∑

m=1

λm

m!
=

e−λ

λ

(

∞
∑

m=0

λm

m!
− 1

)

=
1− e−λ

λ

while for the variance we have

V [Q] =
1

12
+

1− e−λ

6λ

but the cdf is

FQ(x) =







0 x < 0

e−λ
∑

m≥1
λm−1

(m−1)!
⌊mx⌋+1
m+1

0 ≤ x < 1

1 1 ≤ x

and for the distribution, taking q
.
= n/m, we find

P {Q = q} =
∞
∑

ℓ=1

e−λ

ℓm+ 1

λℓm−1

(ℓm− 1)!

with no closed expression readily available
Consider instead denominators M taking only a finite number k = 1, 2, . . . of

equiprobable values m:

P {M = m} =

{

1/k m = 1, 2, . . . , k
0 m > k
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Figure 3: Typical histogram of the relative frequencies of a sample of 105 random
rationals generated following the procedure described in the Section 6.2: here the
maximum value of the equiprobable denominators is chosen to be k = 105

We then have

E [M ] =
k + 1

2
E

[

1

M

]

=
1

k

k
∑

m=1

1

m
=

Hk

k

and hence

V [Q] =
1

12
+

Hk

6k

while for the cdf it is

FQ(x) =
1

k

k
∑

m=1

⌊mx⌋ + 1

m+ 1

and the discrete distribution probabilities are

P {Q = q} =
1

k

⌊k/m⌋
∑

ℓ=1

1

ℓm+ 1
q
.
= n/m

where, since m ≤ k, it is always ⌊k/m⌋ = 1, 2, . . ..
Even in this case we have then no closed formulas to show, but since the sums

involved are now always finite this seems to hint to a simple – but essentially trivial
– procedure to simulate an asymptotically equiprobable sample of rational numbers
in [0, 1]: choose first a large enough number k, then sample a random integer m
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among the equiprobable numbers 1, 2, . . . , k, and finally a random integer n among
the equiprobable numbers 0, 1, . . . , m and put q = n/m. By repeating this procedure
a number of times large enough we get a sample almost uniformly distributed in
[0, 1] as shown in Figure 3. The drawback of this procedure, however, as already
remarked in the Section 2, is that not every number in Q0 would have the chance
of being drawn because only a finite number among them would actually be taken
into account. This large but finite set of numbers could also be made, in principle,
exactly equiprobable, but the infinitely many remaining rational numbers would
instead be totally excluded with strictly zero probability

7 Sequencing rational numbers

Other examples of distributions on the rational numbers in [0, 1] are of course pos-
sible: for instance, with 0 < p < 1 and for a given denominator m = 1, 2, . . ., it is
possible to suppose that the numerators are binomially – instead of equiprobably –
distributed as

P {N = n |M = m} =

(

m

n

)

p(1− p)m−n n = 0, 1, . . . , m

By choosing then a suitable distribution for the denominator M we can define the
global distribution of Q = N/M . However, rather than indulging in displaying these
further examples, we would like to conclude this paper with a few remarks about a
particular residual open problem

We said from the beginning that since Q0 is countable its elements 0 ≤ q ≤ 1
can certainly be arranged in a sequence. If on the other hand we can manage
to have in this sequence all the rational numbers without repetitions, this would
greatly facilitate the task of giving a distribution on Q0. In order however to put
in a sequence without repetitions qk all these rational numbers in [0, 1] – as listed
for instance in the triangular, infinite Table 3 – we should at least be able to find
regularities in their arrangement allowing to say with relative easy both what is the
rational number q associated to an arbitrary given index k, and viceversa what is
the place (index k) of an arbitrary given rational number q. But this quest is baffled
by the rather irregular running of the entries in the said triangular table where,
for instance, even the occurrence among the denominators m of the prime numbers
(the only ones identifying rows with no blanks beyond the extremes) is famously not
immediately predictable. It is apparent however that the possibility of effectively
sequencing all the numbers in Q0 is primarily contingent on some knowledge about
νm, namely the number of the non-blank entries in the mth row of Table 3

Without pretending to treat thoroughly this topic, we will just confine ourselves
to a few remarks about some simple properties of the numbers νm (the number of
rational numbers present in a row of Table 3 sharing a common irreducible denom-
inator m) and σm (the sum of the said rational numbers). First of all it should
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n
σm νm m 0 1 2 3 4 5 6 7 8 9 10
1 2 1 0 1

1/2 1 2 1/2
1 2 3 1/3

2/3
1 2 4 1/4

3/4
2 4 5 1/5

2/5
3/5

4/5
1 2 6 1/6

5/6
3 6 7 1/7

2/7
3/7

4/7
5/7

6/7
2 4 8 1/8

3/8
5/8

7/8
3 6 9 1/9

2/9
4/9

5/9
7/9

8/9
2 4 10 1/10

3/10
7/10

9/10
5 10 11 1/11

2/11
3/11

4/11
5/11

6/11
7/11

8/11
9/11

10/11
...

...
...

...
...

Table 3: Table of rational numbers q
.
= n/m without repetitions, along with the

progressive number νm of the different rationals sharing a common irreducible de-
nominator m, and their sums σm

be said that the normalization condition (18) can be used to find a procedure to
progressively calculate the values of νm. For instance, as stated in the Section 6.1,
when denominators are geometrically distributed and numerators are conditionally
equiprobable, the distribution of Q is (17) and the normalization (18) must be en-
forced by taking into account the number νm of the equiprobable numbers sharing
the same irreducible denominator. It is easy to see then that, by taking z = 1 − w
in (17), the normalization condition (18) becomes

∑

q∈Q0

P {Q = q} =
1− z

z2

∞
∑

m=1

νm

∞
∑

ℓ=1

zmℓ+1

mℓ+ 1
= 1

namely with a power expansion

∞
∑

m=1

νm

∞
∑

ℓ=1

zmℓ+1

mℓ+ 1
=

z2

1− z
=

∞
∑

j=0

zj+2 (19)

This relation can be used to find the values of νm by equating the coefficients of the
identical powers of z: by explicitly writing indeed the first terms of (19) we find

ν1

(

z2

2
+

z3

3
+

z4

4
+

z5

5
+ . . .

)

+ ν2

(

z3

3
+

z5

5
+

z7

7
+

z9

9
+ . . .

)

+ ν3

(

z4

4
+

z7

7
+

z10

10
+

z13

13
+ . . .

)

+ ν4

(

z5

5
+

z9

9
+

z13

13
+

z17

17
+ . . .

)

+ . . .

= z2 + z3 + z4 + z5 + . . .
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and hence we progressively have

ν1/2 = 1 ν1 = 2
ν1/3 +

ν2/3 = 1 ν2 = 1
ν1/4 +

ν3/4 = 1 ν3 = 2
ν1/5 +

ν2/5 +
ν4/5 = 1 ν4 = 2

. . . . . .

and so on, in apparent agreement with the corresponding entries of the Table 3. It
must be added that this procedure can not be contingent on the specific distribution
of Q because νm is always the same sequence and the normalization condition (18)
must hold for every legitimate distribution

We will finally list a few elementary properties of νm and σm that can be helpful
for every future advance: here m = 1, 2, . . . are the denominators, n = 0, 1, . . . , m
the numerators and we call them accepted when n/m appears in the Table 3, namely
if it is an irreducible fraction:

1. νm ≤ m−1 for m ≥ 2: in our table n = 0 and n = m are accepted only for
m = 1 so that in every row with m ≥ 2 the first and last number are always
missing; then apparently νm = (m+1)−2 = m−1; in particular νm = m−1

only for m prime number

2. for m ≥ 3, if n = k ≥ 1 is accepted, then also n = m − k ≤ m− 1

is accepted because, if k/m is irreducible, then also (m−k)/m = 1 − k/m is
irreducible, namely the accepted values always show up in pairs ; in particular,
since n = 1 is always accepted, then also n = m − 1 is always accepted and
hence νm ≥ 2 for m ≥ 3 (the two numbers coincide for m = 2, so that
ν2 = 1)

3. νm always is an even number for m ≥ 3 because according to the point 2
the accepted numerators n always show up in pairs; moreover if m ≥ 3 is

even, then n = m/2 is not accepted because for m = 2ℓ (and ℓ ≥ 2)
the numerator would be n = m/2 = ℓ, and n/m = ℓ/2ℓ would be a reducible
fraction

4. for m ≥ 3 the sum of an accepted pair always is 1 because we are adding
k/m and (m−k)/m = 1 − k/m; as a consequence the sum of the irreducible

fractions sharing a common denominator m is σm = νm/2 because
there are νm/2 accepted pairs; looking moreover at the Table 3 we see that this
last result holds also for m = 1 (ν1 = 2, σ1 = 1) and m = 2 (ν2 = 1, σ2 =

1/2)
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