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Negative probabilities resulting from the Klein-Gordon equation are eliminated from quantum theory ~ithin the 
stochastic interpretation of quantum theory (SIQM) for spin-zero particles. The assumption of real physical paths in l '  4 

implies that only particles {antiparticles) of positive energies move forward in time with positive probability densities. 

The problem raised by the mathematical existence 
of  negative probabilities associated with certain solu- 
tions of  second-order wave equations raises as recently 
stressed by Feynman [1] fundamental questions to 
interpret quantum mechanics. 

In the Copenhagen interpretation (CIQM) it is usual- 
ly accepted that the only way out of the existence of 
negative probabili ty solutions is a rejection of the first 
quantized version of  the Kle in -Gordon  equation in 
favor of  the second quantization formalism given by 
Pauli and Weisskopf [2].  

For the causal stochastic interpretation (SIQM) or 
the pilot-wave model of [ ins tem and de Broglie the 
trouble is apparently greater since (as stressed by John 
Bell [3])  the very existence of  paths in real space - 
time E 4 always implies positive probabili ty distribu- 
t ions. . ,  which are also needed m quantum statistics 
if one accepts their reinterpretation in terms of sto- 
chastic distinguishable particle motions correlated by 
actions at a distance [4].  

The aim of the present letter is to show that in the 
SIQM the very existence of  initial time-like drift mo- 
tions and positive initial particle distributions implies. 
for all spin zero particle systems, the choice of  partic- 
ular positive energy positive density solutions (recent- 
ly discussed by Rizov et al. [5] ) which are preserved 
by the causal laws of motion. 

To separate positive probabili ty distributions we 
first follow Rizov et al.'s presentation [with metric 
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( +++)] of an initial result of  Feshbach and Villars [6] 
The wave equation of a charged spinless relativistic 

particle in an external field I/r = eA u 

(D,aDr m2)~b = O. {1 ) 

where Du = 0 r i l '  u and D u = 0 r + iV u, V u = eA u 
and 3 u = r')/Ox u can be deduced fi-om a lagrangian 
density 

£ = l)u.¢j*Du. ~ m2t~*~, . 

which yields also the expression for the conserved cur- 
reil[ 

j r = •£/C31/" = ~ * ( i - l ' ~  u 2 V  r ) ' ~  

and for the energy density 

TOO = a0¢, '304,  + i)¢,* "De  + (m e - l e g ) ¢ , ' 4 , .  

The procedure which produces a Schr6dinger fl~rnr of 
the Kle in -Gordon  equation consists in setting a two- 
component wave function 

1 ( i ' ? - - - V O f a + m ~ J ] .  

fu 2 \i~J mqJ I 

with ~, = a0g/. The components ffl and 7) 2 have the 
property to reduce in the nonrelativistic limit to tire 
Schr6dinger wavefunction and 0 respectively. 

If we now define a hamiltonian 

( '  'I ' °i (' °! H = ( 1 / 2 m ) D  2 + m (  + V 0 . 
1 I \ 0  - 1 0 1 

0.3750601/84/$  03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



Volume 106A, number 8 PHYSICS LETTERS 24 December 1984 

then the Klein-Gordon equation can be written in 
the "Schr6dinger" form 

i,i, = H * .  (2) 

This hamiltonian is hermitian with respect to the in- 
definite inner product 

<~, '.v>= f * * o 3 , 1 ,  d3x = f ~ * ( i g  0 - 2 v o ) ~  d3x.  

Further one can show that if V, is well-behaved 
(e.g. a sum of  a Coulomb potential and other station- 
ary four potentials), then the integral of  the energy 
density (which is the mean value of  the hamiltonian 
H in any state q') is positive, i.e. 

< , ,  Hq,> = f Too d 3 x >  0.  

One then gets (with Hq~ = Eq.,) that 

E > 0 implies (qz+, q%) > 0 ,  

and 

E < 0  implies ('1I .... ~ _ ) < 0 ,  

where q,'+, '.II_ belong to the positive and negative 
spectrum of  H respectively. 

The negative energy part of  the solutions above can 
be associated to antiparticle solutions. This can be 
shown by means of  the charge conjugation operation 

ee(x) - ,  ,I,C(x) = o I ,I,*(x) = \qJ* (x ) ] "  
1 

q,(e) ~ q, cfp) _,. o~ q ,*( -p) .  

This maps every negative energy solution qs of  the 
Schr6dinger equation with H = H(P, eA")  to a positive 
energy solution of  the same equation with a hamiho- 
nian H c = H(-P ,  -eAU), corresponding to particles of 
opposite charge and opposite momenta with (qt, qs)>0. 

This fact implies that the space of solutions ofeq .  
(2) splits in two subsets, {E > 0, (qJ, ko) > 0};  {E<O,  
(q.'. * )  < 0 } and consequently the physical states can 
be defined as superpositions of positive energy solu- 
tions only. 

In the SIQM we can show that the equations of  
motion themselves imply that if positive energy and 
positive probability density states are initially given in 
a space-like surface Y'0 (i.e. Cauchy's initial conditions) 
they are causally transformed into positive energy- 

positive probability density states on any subsequent 
surface Y.. This can be derived as follows. We start 
from the Klein-Gordon equation (1) and assume 
= exp(P + iS) with which it is decomposed in a Ham- 
il ton-Jacobi-type and a continuity equation: (real 
and imaginary part) 

( 3 u S -  Vu)(~uS - VU) + m2 -- E]P 3uP3uP=O, 

a u [e~(0uS - V.)] = 0.  

In the stochastic interpretation P, S and V can in 
general be functions not only defined in quantum 
configuration space but also associated with tile mean 
trajectories of the quantum particle. In such a case we 
have 

P= P(xU(r), r), S = S(xU(r), r), V = VU(xU(r)), 

where r denotes the proper time on a trajectory. 
However since this model should reproduce the 

quantum mechanical results, the explicit proper time 
dependence should vanish, as shown by Guerra and 
Ruggiero [7] i.e. 

P : P(x" ( r ) ) ,  s : S ( x " ( r ) ) .  

Furthermore if we define the variable mass of  de 
Broglic M as 

M 2 = m 2 - /ZIP- 3uP3uP 

and calculate the total proper time derivative of  the 
scalar density P = e2PM along a line of  flow we find [8] 

d0/dr = 3u(OuU), (3) 

where uU is the unit four velocity along a line of  flow. 
Noticing that in the case of  presence of  an interac- 
tion VU the four-momentum Pu is [7] 

& = a u S  - v u 

and the unit vector in this direction can be written 
using the (H J) equation as 

u u = ( b u S -  V u ) / I ~ u S -  Vul = ( ~ u S -  Vu)/M.  

Now we can write eq. (3) in a form 

do/dr = a u [O(3uS - Vu)/M] = 3 u [e2P(3uS - Vu) ] = 0 

and dp/dt vanishes identically because of the conti- 
nuity equation. As a consequence we see that 0 = 
eZPM is constant along a line o f  f l ow  i.e. = K, where 
K is real or purely imaginary. 
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For the determination of this constant we can pro- 
ceed as follows: Noting that Pu = auS - Vu we can 
perform a transformation to the rest frame where tiffs 

expression reduces to P0 = 30 S - V0 i.e. the energy E 
of the particle. Since the energy E in the rest frame is 

nt, merically equal to the variable mass M, we realize 
that PO is an expression for the variable mass. Now if 
the initial conditions on the quantum particle imply a 
time-like trajectory (with initially h" > 0) then M is 
real and initially also positive. With this information 
we can also deduce the positive character of the real 
constant K, since e 2/' > 0 and M was shown to be 
positive. Due to the fact that e ~ M  = K all alon~ a line 
of flow, and since e 2P > 0 is always true, we conclude 
that i f P  u of a particle was initially time-like and E > 0  
then it remains always time-like and M remains posi- 
tive along the trajectory. 

A final step consists m associating this property 
with the density as the fourth component of the con- 
served four current 

/u = ~(x~(r ) )*  ( i - 1 ~  ._. 2Vu)q;(x~(r) ) .  

In fact this reduces in the rest frame of the particle to 

J0 = 2eW(;30S " V0)' 
Using the same argument as above we realize that 

this is numerically equal to 2e2PM which is a conserv- 

ed positive quantity if the initial condition was E > 0. 
Thus positive energy solutions imply positive densities 
and this character, once established, is conserved along 
any time-like trajectory. We have thus shown that 
local positive energy solutions are always associated 
with local positive densities, a solution that is cotra- 

patible with the solutions of Rizov et al., but does not 
only concern the integrated values but the local values 
instead. Of course, by the same procedures one proves 
that E < 0 is associated wi th j  0 < 0 solutions and can 
be transformed by means of the charge conjugation 
operation to E > 0 , j  0 > 0 antiparticle solutions. 

As we shall show in subsequent publications this 
reasoning can be extended 

(i) to the case of the Proca spin one equation and 
(ii) to the Feynman-Gell -Mann 2-component spinor 

second-order equation representating spin 1/2 and 

(iii) to the correlated system of :V non-interacting 
scalar particles in an external field satisfying the causal 
system [7 ] 

or  

(x I .. . .  x x ) =  0.  

where each correlated particle follows real time-like 

motions m space-t ime. Indeed all such systems can be 
treated with the same Foldy Wouthuysen like separa- 

tion given above and analysed within the SIQM with 
time-like average causal drift motions influenced by a 
non-local stochastic quantum potential [7,91. 
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