Letters to the Editor

The Editor does not hold himself responsible for opinions expressed by his correspondents. He cannot undertake to return, or to correspond with the writers of, rejected manuscripts intended for this or any other part of NATURE. No notice is taken of anonymous communications.

Notes on points in some of this week's letters appear on p. 247.

CORRESPONDENTS ARE INVITED TO ATTACH SIMILAR SUMMARIES TO THEIR COMMUNICATIONS.

Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction

On bombarding uranium with neutrons, Fermi and collaborators¹ found that at least four radioactive substances were produced, to two of which atomic numbers larger than 92 were ascribed. Further investigations² demonstrated the existence of at least nine radioactive periods, six of which were assigned to elements beyond uranium, and nuclear isomerism had to be assumed in order to account for their chemical behaviour together with their genetic relations.

In making chemical assignments, it was always assumed that these radioactive bodies had atomic numbers near that of the element bombarded, since only particles with one or two charges were known to be emitted from nuclei. A body, for example, with similar properties to those of osmium was assumed to be eka-osmium (Z=94) rather than osmium (Z=76) or ruthenium (Z=44).

Following up an observation of Curie and Savitch³, Hahn and Strassmann⁴ found that a group of at least three radioactive bodies, formed from uranium under neutron bombardment, were chemically similar to barium and, therefore, presumably isotopic with radium. Further investigation⁵, however, showed that it was impossible to separate these bodies from barium (although mesothorium, an isotope of radium, was readily separated in the same experiment), so that Hahn and Strassmann were forced to conclude that isotopes of barium (Z=56) are formed as a consequence of the bombardment of uranium (Z=92) with neutrons.

At first sight, this result seems very hard to understand. The formation of elements much below uranium has been considered before, but was always rejected for physical reasons, so long as the chemical evidence was not entirely clear cut. The emission, within a short time, of a large number of charged particles may be regarded as excluded by the small penetrability of the 'Coulomb barrier', indicated by Gamov's theory of alpha decay.

On the basis, however, of present ideas about the behaviour of heavy nucleis, an entirely different and essentially classical picture of these new disintegration processes suggests itself. On account of their close packing and strong energy exchange, the particles in a heavy nucleus would be expected to move in a collective way which has some resemblance to the movement of a liquid drop. If the movement is made sufficiently violent by adding energy, such a drop may divide itself into two smaller drops.

In the discussion of the energies involved in the deformation of nuclei, the concept of surface tension of nuclear matter has been used and its value has been estimated from simple considerations regarding nuclear forces. It must be remembered, however,

that the surface tension of a charged droplet is diminished by its charge, and a rough estimate shows that the surface tension of nuclei, decreasing with increasing nuclear charge, may become zero for atomic numbers of the order of 100.

It seems therefore possible that the uranium nucleus has only small stability of form, and may, after neutron capture, divide itself into two nuclei of roughly equal size (the precise ratio of sizes depending on finer structural features and perhaps partly on chance). These two nuclei will repel each other and should gain a total kinetic energy of c. 200 Mev., as calculated from nuclear radius and charge. amount of energy may actually be expected to be available from the difference in packing fraction between uranium and the elements in the middle of the periodic system. The whole 'fission' process can thus be described in an essentially classical way, without having to consider quantum-mechanical 'tunnel effects', which would actually be extremely small, on account of the large masses involved.

After division, the high neutron/proton ratio of uranium will tend to readjust itself by beta decay to the lower value suitable for lighter elements. Probably each part will thus give rise to a chain of disintegrations. If one of the parts is an isotope of barium⁵, the other will be krypton (Z=92-56), which might decay through rubidium, strontium and yttrium to zirconium. Perhaps one or two of the supposed barium-lanthanum-cerium chains are then actually strontium-yttrium-zirconium chains.

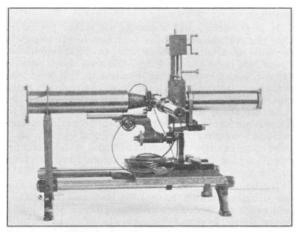
It is possible⁵, and seems to us rather probable, that the periods which have been ascribed to elements beyond uranium are also due to light elements. From the chemical evidence, the two short periods (10 sec. and 40 sec.) so far ascribed to 239 U might be masurium isotopes (Z=43) decaying through ruthenium, rhodium, palladium and silver into cadmium.

In all these cases it might not be necessary to assume nuclear isomerism; but the different radioactive periods belonging to the same chemical element may then be attributed to different isotopes of this element, since varying proportions of neutrons may be given to the two parts of the uranium nucleus.

By bombarding thorium with neutrons, activities are obtained which have been ascribed to radium and actinium isotopes⁸. Some of these periods are approximately equal to periods of barium and lanthanum isotopes⁵ resulting from the bombardment of uranium. We should therefore like to suggest that these periods are due to a 'fission' of thorium which is like that of uranium and results partly in the same products. Of course, it would be especially interesting if one could obtain one of these products from a light element, for example, by means of neutron capture.

It might be mentioned that the body with halflife 24 min.2 which was chemically identified with uranium is probably really 239U, and goes over into an eka-rhenium which appears inactive but may decay slowly, probably with emission of alpha particles. (From inspection of the natural radioactive elements, 239U cannot be expected to give more than one or two beta decays; the long chain of observed decays has always puzzled us.) formation of this body is a typical resonance process,; the compound state must have a life-time a million times longer than the time it would take the nucleus to divide itself. Perhaps this state corresponds to some highly symmetrical type of motion of nuclear matter which does not favour 'fission' of the nucleus. LISE MEITNER.

> Physical Institute. Academy of Sciences, Stockholm.


> > O. R. Frisch.

Institute of Theoretical Physics, University, Copenhagen. Jan. 16.

- ¹ Fermi, E., Amaldi, F., d'Agostino, O., Rasetti, F., and Segrè, E. Proc. Roy. Soc., A, 146, 483 (1934).
- ² See Meitner, L., Hahn, O., and Strassmann, F., Z. Phys., 106, 249
- Curie, I., and Savitch, P., C.R., 208, 906, 1643 (1938).
 Hahn, O., and Strassmann, F., Naturviss., 28, 756 (1938).
- ⁵ Hahn, O., and Strassmann, F., Naturwiss., 27, 11 (1939).
- Bohr, N., NATURE, 137, 344, 351 (1936).
 Bohr, N., and Kalckar, F., Kgl. Danske Vid. Selskab, Math. Phys. Medd., 14, Nr. 10 (1937).
- ⁸ See Meitner, L., Strassmann, F., and Hahn, O., Z. Phys., 109, 538 (1938).
- ⁹ Bethe, A. H., and Placzek, G., Phys. Rev., 51, 450 (1937).

A Novel Thermostat

It is often necessary to maintain an apparatus at This may be done by a constant temperature. immersing it in a circulating liquid maintained at a constant temperature by a thermostat, or by jacketing

TEMPERATURE-CONTROLLED APPARATUS.

it with alternate shells of thermally conducting and insulating materials heated to the selected temperature by means of an internal electric heater. These methods have the disadvantages that the thermostatic system makes the apparatus less accessible, the

control of the temperature to within a narrow range requires some complication in the whole system, and it is difficult to prevent 'hunting'.

In a measurement which we are making of the electronic charge, it is necessary to maintain the temperature of the air, in which an oil drop moves. uniform and constant so that it has no motion due to convection. As a convenient solution of this problem has been found which seems capable of

many applications, it is described here.

A resistance thermometer is formed by winding a single layer coil of copper wire around and in good thermal contact with the microscope condenser which forms part of the apparatus the temperature of which is under control. (In the accompanying illustration the condenser tube is on the right.) This coil forms one arm of a Wheatstone bridge, the other arms being of manganin resistances. Any change in temperature of the apparatus deflects the light spot of the galvanometer connected to this bridge, and for one direction of deflection the spot falls on a photoelectric cell, which operates a polarized relay, which in turn puts off two 30-watt lamps placed on opposite sides of the apparatus. The amplification of the galvanometer current by the photo-electric cell is 106, and including the relay about 107.

The bridge is adjusted to be balanced at a temperature a few degrees above the maximum temperature to which the room rises during a day. The lamps flash on and off every few seconds and maintain the temperature of the external surface of the apparatus constant to about 0.002°C. After the thermostat has been in operation for an hour, we have not been able to detect, by means of a thermocouple, any change of temperature inside the ap-

paratus.

T. H. LABY.

Natural Philosophy Laboratory, V. D. HOPPER. University of Melbourne. Dec. 9.

Limitations on the Modern Tensor Scheme of Relativity

Ir does not appear to have been noticed by anybody that the tensor scheme of relativity is incompetent by itself to include relations of chirality, to use Lord Kelvin's term. For it is developed from a pure Riemannian geometry, as based solely on the use of an ideal mobile a-chiral linear measuring rule. The meaning of relativity has, of course, always been that knowledge consists of the relations of one system to another, especially when one type of system of high simplicity, such as the linear measuring rule, is taken as the standard of comparison for all others. This significance of the chiral property, which is the difference between a chiral system and its mirror-image, for example, between a right-hand glove and a left-hand, goes back to Kant's early writings, and remained fundamental in his trains of thought in relation to space and time; later, in the more amateur hands of Pasteur, it created a fundamental science. Chiral systems can be compared The frame completely only with chiral systems. of reference for a chiral system must itself have chiral property; for example, to be effective, the mobile measuring rod of Einstein would require to possess a screw structure essential to it. When Newton explained how he could tell by experiment