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introduction, why?

the differential decay rate for the process B(s) → D(s)`ν is given by

dΓ(B → D`ν)

dω
= (known factors)|Vcb|2(ω2 − 1)

3
2 F 2

D (ω)

ω =
pB · pD

MBMD

= vB · vD

an accurate knowledge of the hadronic form factor F 2
D (ω) is required in order to extract Vcb from

exclusive decays

FD (ω) approaches the Isgur-Wise limit as mb,mc →∞

Q: is there still room for a quenched calculation?



introduction, still quenched?

heavy–light systems are challenging; on currently affordable lattice sizes (at least in
unquenched simulations) one has

amb > 1 Lmd > 1 or amb < 1 Lmd < 1

the Fermilab group has already carried out quenched,
S. Hashimoto et al Phys. Rev. D 66 (2002) 014503

S. Hashimoto et al Phys. Rev. D 61 (2000) 014502

and preliminary unquenched calculations of the form factors
M. Okamoto et al Nucl. Phys. Proc. Suppl. 140 (2005) 461

Fermilab the Fermilab approach consists in simulating the following action with am0 > 1

S =
X

n

ψ̄n

"
m0 + γ0D0 + ζ~γ · ~D − rt

aD2
0

2
− rs

a~D2

2
+ cB

iσijFij

4
+ cE

iσ0iF0i

2

#
ψn

i.e. the Symanzik effective action for quarks with |a~p| � 1 with mass dependent coefficients

usually computed perturbatively•
A X El-Khadra et al Phys. Rev. D 55 (1997) 3933

S Aoki et al Prog. Theor. Phys. 109 (2003) 383

N H Christ et al hep-lat/0608006



introduction, still quenched?

the unquenched results have been carried out by using “Rooted Staggered fermions”

staggered fermions are introduced on the lattice by simulating the following quark action
(actually in its improved version):

χ̄Dstagχ =
X

n

χ̄n

24X
µ

ηn,µ

2

“
Un,µχn+µ − U†n−µ,µχn−µ

”
+ m0χn

35
affected by doubling, i.e. it has 24 = 16 one-component fermions

rooting means that gauge configurations are generated according to the following partition
function:

Z root
Nf =3 =

Z
DUe−Sg

n
det[Dstag(mu)] det[Dstag(md )] det[Dstag(ms )]

o1/4

S. R. Sharpe@LATTICE 2006 [hep-lat/0610094]:

Q: “Rooted staggered fermions: Good, bad or ugly?”

A: ugly! in the sense that are affected by unphysical contributions at regulated stage that need a

complicate analysis to be removed•



the step scaling method, the idea

SSM the Step Scaling Method has been introduced in order to deal with two–scale problems on the
lattice

M Guagnelli et al Phys. Lett. B 546 (2002) 237

on a very general ground, it is based on a simple identity

O(Eh, El ,∞) = O(Eh, El , L0)
O(Eh, El , 2L0)

O(Eh, El , L0)| {z }
σ(Eh,El ,L0)

O(Eh, El , 4L0)

O(Eh, El , 2L0)| {z }
σ(Eh,El ,2L0)

. . .

and on a reasonable “phenomenological assumption”, i.e finite volume effects are due to the
low energy scale

σ(Eh, El , L) ' σ(El , L)
∂

∂( 1
Eh

)
σ(Eh, El , L) ' 0 Eh � El

so, provided that Eh � 4El , one has

O(Eh, El ,∞) ' O(Eh, El , L0) σ(Eh/2, El , L0) σ(Eh/4, El , 2L0) . . .



the step scaling method, heavy-light mesons

in the case of heavy-light systems the argument can be made rigorous by using HQET predictions

let us take fB as an example
G M de Divitiis et al Nucl. Phys. B 672 (2003) 372

D Guazzini et al PoS LAT2006 (2006) 084

σ(mh,md , L) =

f 0
B (md , 2L)

„
1 +

f 1
B (md ,2L)

mh
+ . . .

«
f 0
B (md , L)

„
1 +

f 1
B

(md ,L)

mh
+ . . .

« = σ
stat(md , L)

 
1 +

f 1
B (md , 2L)− f 1

B (md , L)

mh

!

= σ
stat(md , L)

 
1 +

f 1,1
B (md )

mhL

!

even better in the case of the meson masses (b–quark mass calculation)
M Guagnelli et al Nucl. Phys. B 675 (2003) 309

σ(mh,md , L) =
M(mh,md , 2L)

M(mh,md , L)
=

mh + Λ̄(md , 2L) + . . .

mh + Λ̄(md , L) + . . .
= 1 +

Λ̄(md , 2L)− Λ̄(md , L)

mh

+ . . .



the step scaling method, does it works in practice?

UNC:• The calculation is quenched.

EFT:• Fully non perturbative through SSM.

χE:• The strange quark is under control.

aE:• 4 lattice spacings.

LE:• Naturally estimated.
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B(s) → D(s)`ν, parametrization of the form factors

on the lattice one has to calculate the matrix element of the heavy–heavy vector current between the parent
and daughter hadronic particles

〈M2(p2)‖ h̄2(x)γµh1(x)| {z }
Vµ

‖M1(p1)〉

these matrix elements can be parametrized in terms of two independent form factors

ω =
p1 · p2

M1M2
= v1 · v2

〈M2(p2)‖V µ ‖M1(p1)〉 = f+(ω)(pµ
1 + pµ

2 ) + f−(ω)(pµ
1 − pµ

2 )

〈M2(p2)‖V µ ‖M1(p1)〉 =
p

M1M2

˘
h+(ω)(vµ

1 + vµ
2 ) + h−(ω)(vµ

1 − vµ
2 )
¯

obviously the two parametrization are simply related each other

h±(ω) =
(M1 + M2)f±(ω) + (M1 − M2)f∓(ω)

2
p

M1M2

f±(ω) =
(M1 + M2)h±(ω) − (M1 − M2)h∓(ω)

2
p

M1M2



B(s) → D(s)`ν, static limit of the form factors

HQET interactions at leading order (static theory) are blind with respect to the spin and flavour of the heavy
quarks

as a consequence the semileptonic form factors reduce to a single universal function in this limit, the
Isgur–Wise function ξ(ω):

8<: h+(ω) −→ ξ(ω)

h−(ω) −→ 0

8><>:
f+(ω) −→ r+1

2
√

r
ξ(ω)

f−(ω) −→ r−1
2
√

r
ξ(ω)

where the limit mh1
,mh2

→∞ has been taken fixing the ratio r = mh2
/mh1

the form factor appearing in the differential decay rate is

G(ω) = FD (ω) =
2
√

r

r + 1
f+(ω) = h+(ω)−

„
1− r

r + 1

«
h−(ω) −→ ξ(ω)



lattice computation of the matrix elements, continuous momenta

having in mind this computation we experimented
flavour–twisted boundary conditions in order to
have a continuous momentum transfer in between
one–particle states

ψ(x + eiL) = e iθiψ(x) θ0 = 0

R
dp e ip·(x+ei L)ψ(t; p) =

R
dp e i(p·x+θi )ψ(t; p)

e ipi L = e iθi

pi =
θi
L + 2πn

L , n ∈ Z 3

G. M. de Divitiis et al Phys. Lett. B 595 (2004) 408

ZeRo Collaboration Nucl. Phys. B 664 (2003) 276

P. F. Bedaque Phys. Lett. B 593, 82 (2004)

C. T. Sachrajda et al Phys. Lett. B 609, 73 (2005)

many others
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lattice computation of the matrix elements, only 3–point functions

let us introduce the following correlation functions in the Schrödinger Functional regularization

O1 =
a6

L3

X
y,z

ζ̄h1
(y; θ1)γ

5
ζl (z)

O2 =
a6

L3

X
y′,z′

ζ̄l (y
′)γ5

ζh2
(z′; θ2)

V µ(x) = ψ̄h2
(x ; θ2)γ

µ
ψh1

(x ; θ1)

fM2VµM1
(x0; p1, p2) =

a3

2

X
x

〈 O2 V µ(x) O1 〉

by assuming single state dominance one gets

fM2VµM1
(x0; p1, p2) '

ρ1(p1)ρ2(p2)

4
√

E1E2

〈M2(p2)‖V µ ‖M1(p1)〉 e−x0E1 e−(T−x0)E2



lattice computation of the matrix elements, only 3–point functions

“single ratios”: the crucial observation is that, by the conservation of the vector current one gets:

fMV 0M(x0; p, p) '
ρ(p)2

4E
2E|{z}

〈M(p)‖V 0‖M(p)〉

e−TE

so that the matrix elements are given by (renormalization factors cancel in the ratio)

〈M2(p2)‖V µ ‖M1(p1)〉 = 2
p

E1E2

fM2VµM1
(x0; p1, p2)q

fM2V 0M2
(x0; p2, p2)fM1V 0M1

(x0; p1, p1)

furthermore, in the mass diagonal case the form factors reduce to a single one

p1 = 0 p2 = (θ2/L, 0, 0)

ω =
p2 · p1

M2M2
=

E2

M2

˛̨̨̨
˛ fM2V 1M2

(x0; p2, 0)

fM2V 0M2
(x0; p2, 0)

˛̨̨̨
˛ =

√
ω2 − 1

ω + 1



lattice computation of the matrix elements, only 3–point functions

“double ratios”: our technique gives the same level of accuracy of the “double ratios” technique previously
introduced by the Fermilab group:

R0(x0) =
fM2V 0M1

(x0; 0, 0)fM1V 0M2
(x0; 0, 0)

fM2V 0M2
(x0; 0, 0)fM1V 0M1

(x0; 0, 0)
' |h+(ω = 1)|

Rk (x0, p2) =
fM2VkM1

(x0; p2, 0)fM2V 0M2
(x0; p2, 0)

fM2V 0M1
(x0; p2, 0)fM2VkM2

(x0; p2, 0)
'

'
»
1−

h−(ω)

h+(ω)

– »
1 +

h−(ω)

2h+(ω)
(ω − 1)

–
ω ' 1

but “single ratios” work well also at ω 6= 1



numerical results, small volume

on the small volume, L0 = 0.4 fm, we have mb = mphys
b :
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numerical results, step scaling function

the step scaling functions are extremely flat
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numerical results, volume 0.8 fm
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numerical results, volume 0.8 fm
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numerical results, volume 0.8 fm
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numerical results, volume 0.8 fm
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experimental situation



experimental situation vs lattice at ω > 1
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experimental situation vs lattice at ω > 1 another small step?
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conclusions

the step scaling method has been shown to work also in the case of matrix elements between one–particle
states

we have extracted the relativistic heavy–heavy form factors at ω > 1 with a numerical precision that is
comparable with previous lattice calculations at ω = 1

after having verified that residual finite volume effects are negligible we plan to extend the technique to
B(s) → D?

(s)`ν (matrix elements already calculated. . . )

bag parameters?

unquench all. . .



outlooks

we have generated a big set of Nf = 2 gauge configurations on big volumes and in the chiral regime:
L. Del Debbio, L. Giusti,M. Lüscher,R. Petronzio,N. T.

A: a = 0.0717(15) fm L = 1.721(36) fm

B: a = 0.0521(07) fm L = 1.667(22) fm

D: a = 0.0784(10) fm L = 1.882(24) fm

E: a ' 0.078 fm L ' 2.5 fm



outlooks

these configurations have been used in order to study the dependence of the mass and decay constant of the
“pion” as a function of the sea quark mass and make contact with chiral perturbation theory

L. Del Debbio et al hep-lat/0610059 (accepted JHEP)
L. Del Debbio et al hep-lat/0701009 (accepted JHEP)



outlooks

in the forthcoming months we plan to apply the step scaling method in the unquenched case (Nf = 2) in
order to compute mb , fB , Vcb , Vub , BB and renormalization factors (structure functions, etc.).

the idea is to use the set of gauge configurations already generated in collaboration with Del Debbio et
al. as the big volume

and generate the small volumes after performing the appropriate matching of the parameters (a, msea,
etc.)

Q: how much it will cost?

A1: the calculation of the observables on the “big volumes” (64× 323) takes (CGNE even/odd
preconditioned)

single propagator ' 2 h/crate

observables ' 10× single propagator× Ncnfg ' 3 y/crate

A2: the generation of the small volume gauge configurations is cheep w.r.t. than in the big volume case
(Schrödinger Functional cutoff 1/L). The cost can be reasonably estimated to be the same as the
calculation of the observables on the big volumes. . .
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