$B_{(s)} \longrightarrow D_{(s)}$ l form factors through the Step Scaling Method

Nazario Tantalo

INFN sez. "Tor Vergata"
Centro Ricerche e Studi "E. Fermi"

08-02-2007

outline

- introduction
- the step scaling method
- parametrization of the form factors
- lattice calculation of the form factors
- numerical results
- conclusions
- outlooks

introduction, why?

the differential decay rate for the process $B_{(s)} \rightarrow D_{(s)} \ell \nu$ is given by

$$
\begin{aligned}
& \frac{d \Gamma(B \rightarrow D \ell \nu)}{d \omega}=(\text { known factors })\left|V_{c b}\right|^{2}\left(\omega^{2}-1\right)^{\frac{3}{2}} F_{D}^{2}(\omega) \\
& \omega=\frac{p_{B} \cdot p_{D}}{M_{B} M_{D}}=v_{B} \cdot v_{D}
\end{aligned}
$$

- an accurate knowledge of the hadronic form factor $F_{D}^{2}(\omega)$ is required in order to extract $V_{c b}$ from exclusive decays
- $F_{D}(\omega)$ approaches the Isgur-Wise limit as $m_{b}, m_{c} \rightarrow \infty$

Q: is there still room for a quenched calculation?

introduction, still quenched?

- heavy-light systems are challenging; on currently affordable lattice sizes (at least in unquenched simulations) one has

$$
a m_{b}>1 \quad L m_{d}>1 \quad \text { or } \quad a m_{b}<1 \quad L m_{d}<1
$$

- the Fermilab group has already carried out quenched,
S. Hashimoto et al Phys. Rev. D 66 (2002) 014503
S. Hashimoto et al Phys. Rev. D 61 (2000) 014502
- and preliminary unquenched calculations of the form factors
M. Okamoto et al Nucl. Phys. Proc. Suppl. 140 (2005) 461

Fermilab the Fermilab approach consists in simulating the following action with amo >1

$$
S=\sum_{n} \bar{\psi}_{n}\left[m_{0}+\gamma_{0} D_{0}+\zeta \vec{\gamma} \cdot \vec{D}-r_{t} \frac{a D_{0}^{2}}{2}-r_{s} \frac{a \vec{D}^{2}}{2}+c_{B} \frac{i \sigma_{i j} F_{i j}}{4}+c_{E} \frac{i \sigma_{0 i} F_{0 i}}{2}\right] \psi_{n}
$$

i.e. the Symanzik effective action for quarks with $|a \vec{p}| \ll 1$ with mass dependent coefficients usually computed perturbatively

A X El-Khadra et al Phys. Rev. D 55 (1997) 3933
S Aoki et al Prog. Theor. Phys. 109 (2003) 383

introduction, still quenched?

- the unquenched results have been carried out by using "Rooted Staggered fermions"
- staggered fermions are introduced on the lattice by simulating the following quark action (actually in its improved version):

$$
\bar{\chi} D_{\operatorname{stag}} \chi=\sum_{n} \bar{\chi}_{n}\left[\sum_{\mu} \frac{\eta_{n, \mu}}{2}\left(U_{n, \mu} \chi_{n+\mu}-U_{n-\mu, \mu}^{\dagger} \chi_{n-\mu}\right)+m_{0} \chi_{n}\right]
$$

affected by doubling, i.e. it has $2^{4}=16$ one-component fermions
rooting means that gauge configurations are generated according to the following partition function:

$$
Z_{N_{f}=3}^{\mathrm{root}}=\int D U e^{-S_{g}}\left\{\operatorname{det}\left[D_{\text {stag }}\left(m_{u}\right)\right] \operatorname{det}\left[D_{\text {stag }}\left(m_{d}\right)\right] \operatorname{det}\left[D_{\text {stag }}\left(m_{s}\right)\right]\right\}^{1 / 4}
$$

S. R. Sharpe@LATTICE 2006 [hep-lat/0610094]:

Q: "Rooted staggered fermions: Good, bad or ugly?"
A: ugly! in the sense that are affected by unphysical contributions at regulated stage that need a complicate analysis to be removed

SSM the Step Scaling Method has been introduced in order to deal with two-scale problems on the lattice

M Guagnelli et al Phys. Lett. B 546 (2002) 237
on a very general ground, it is based on a simple identity

$$
\mathcal{O}\left(E_{h}, E_{l}, \infty\right)=\mathcal{O}\left(E_{h}, E_{l}, L_{0}\right) \underbrace{\frac{\mathcal{O}\left(E_{h}, E_{l}, 2 L_{0}\right)}{\mathcal{O}\left(E_{h}, E_{l}, L_{0}\right)}}_{\sigma\left(E_{h}, E_{l}, L_{0}\right)} \underbrace{\frac{\mathcal{O}\left(E_{h}, E_{l}, 4 L_{0}\right)}{\mathcal{O}\left(E_{h}, E_{l}, 2 L_{0}\right)}}_{\sigma\left(E_{h}, E_{l}, 2 L_{0}\right)} \ldots
$$

- and on a reasonable "phenomenological assumption", i.e finite volume effects are due to the low energy scale

$$
\sigma\left(E_{h}, E_{l}, L\right) \simeq \sigma\left(E_{l}, L\right) \quad \frac{\partial}{\partial\left(\frac{1}{E_{h}}\right)} \sigma\left(E_{h}, E_{l}, L\right) \simeq 0 \quad E_{h} \gg E_{l}
$$

- so, provided that $E_{h} \gg 4 E_{l}$, one has

$$
\mathcal{O}\left(E_{h}, E_{l}, \infty\right) \simeq \mathcal{O}\left(E_{h}, E_{l}, L_{0}\right) \quad \sigma\left(E_{h} / 2, E_{l}, L_{0}\right) \quad \sigma\left(E_{h} / 4, E_{l}, 2 L_{0}\right) \quad \ldots
$$

the step scaling method, heavy-light mesons

- in the case of heavy-light systems the argument can be made rigorous by using HQET predictions
- let us take f_{B} as an example

G M de Divitiis et al Nucl. Phys. B 672 (2003) 372
D Guazzini et al PoS LAT2006 (2006) 084

$$
\begin{aligned}
& \sigma\left(m_{h}, m_{d}, L\right)=\frac{f_{B}^{0}\left(m_{d}, 2 L\right)\left(1+\frac{f_{B}^{1}\left(m_{d}, 2 L\right)}{m_{h}}+\ldots\right)}{f_{B}^{0}\left(m_{d}, L\right)\left(1+\frac{f_{B}^{1}\left(m_{d}, L\right)}{m_{h}}+\ldots\right)}=\sigma^{\text {stat }}\left(m_{d}, L\right)\left(1+\frac{f_{B}^{1}\left(m_{d}, 2 L\right)-f_{B}^{1}\left(m_{d}, L\right)}{m_{h}}\right) \\
&=\sigma^{\text {stat }}\left(m_{d}, L\right)\left(1+\frac{f_{B}^{1,1}\left(m_{d}\right)}{m_{h} L}\right)
\end{aligned}
$$

- even better in the case of the meson masses (b-quark mass calculation)

M Guagnelli et al Nucl. Phys. B 675 (2003) 309

$$
\sigma\left(m_{h}, m_{d}, L\right)=\frac{M\left(m_{h}, m_{d}, 2 L\right)}{M\left(m_{h}, m_{d}, L\right)}=\frac{m_{h}+\bar{\Lambda}\left(m_{d}, 2 L\right)+\ldots}{m_{h}+\bar{\Lambda}\left(m_{d}, L\right)+\ldots}=1+\frac{\bar{\Lambda}\left(m_{d}, 2 L\right)-\bar{\Lambda}\left(m_{d}, L\right)}{m_{h}}+\ldots
$$

the step scaling method, does it works in practice?

$$
\begin{aligned}
& x^{2}-2.59 \longmapsto \\
& x^{2}-1.80 \longmapsto+-1 \\
& x^{2}-2.71!-\gg-4 \\
& x^{2}-1,33 \mapsto \text { 米-1 } \\
& x^{2}-1071 \square \\
& x^{2}-1.37+-9-1 \\
& x^{2}-1331-\text { - } \\
& x^{2}-1.371-8-1
\end{aligned}
$$

UNC: The calculation is quenched.

Fully non perturbative through SSM.
$\chi \mathbf{E}$:
The strange quark is under control.
$a \mathrm{E}$:
4 lattice spacings.
LE:
Naturally estimated.

the step scaling method, does it works in practice?

UNC: The calculation is quenched.	
EFT:	Fully non perturbative through SSM.
$\chi \mathrm{E}:$	The strange quark is under control.
$a \mathrm{E}:$	3 lattice spacings.
LE:	Naturally estimated.

Hs $+\cdots+\cdots$ -
$\mathrm{HI}_{1} \longmapsto \longrightarrow$
$\mathrm{H}_{2}:-$ 米 -
$\mathrm{H}_{3} \div \cdots$ 回

$\left(a / r_{0}\right)^{2}$

$\left(a / r_{n}\right)^{2}$

$B_{(s)} \rightarrow D_{(s)} \ell \nu, \quad$ parametrization of the form factors

on the lattice one has to calculate the matrix element of the heavy-heavy vector current between the parent and daughter hadronic particles

$$
\langle\mathcal{M}_{2}\left(p_{2}\right)\|\underbrace{\bar{h}_{2}(x) \gamma^{\mu} h_{1}(x)}_{V^{\mu}}\| \mathcal{M}_{1}\left(p_{1}\right)\rangle
$$

these matrix elements can be parametrized in terms of two independent form factors

$$
\begin{aligned}
\omega & =\frac{p_{1} \cdot p_{2}}{M_{1} M_{2}}=v_{1} \cdot v_{2} \\
\left\langle\mathcal{M}_{2}\left(p_{2}\right)\left\|V^{\mu}\right\| \mathcal{M}_{1}\left(p_{1}\right)\right\rangle & =f_{+}(\omega)\left(p_{1}^{\mu}+p_{2}^{\mu}\right)+f_{-}(\omega)\left(p_{1}^{\mu}-p_{2}^{\mu}\right) \\
\left\langle\mathcal{M}_{2}\left(p_{2}\right)\left\|V^{\mu}\right\| \mathcal{M}_{1}\left(p_{1}\right)\right\rangle & =\sqrt{M_{1} M_{2}}\left\{h_{+}(\omega)\left(v_{1}^{\mu}+v_{2}^{\mu}\right)+h_{-}(\omega)\left(v_{1}^{\mu}-v_{2}^{\mu}\right)\right\}
\end{aligned}
$$

obviously the two parametrization are simply related each other

$$
h_{ \pm}(\omega)=\frac{\left(M_{1}+M_{2}\right) f_{ \pm}(\omega)+\left(M_{1}-M_{2}\right) f_{\mp}(\omega)}{2 \sqrt{M_{1} M_{2}}} \quad f_{ \pm}(\omega)=\frac{\left(M_{1}+M_{2}\right) h_{ \pm}(\omega)-\left(M_{1}-M_{2}\right) h_{\mp}(\omega)}{2 \sqrt{M_{1} M_{2}}}
$$

$B_{(s)} \rightarrow D_{(s)} \ell \nu, \quad$ static limit of the form factors

HQET interactions at leading order (static theory) are blind with respect to the spin and flavour of the heavy quarks
as a consequence the semileptonic form factors reduce to a single universal function in this limit, the Isgur-Wise function $\xi(\omega)$:

$$
\left\{\begin{array} { l l l }
{ h _ { + } (\omega) } & { \longrightarrow } & { \xi (\omega) } \\
{ h _ { - } (\omega) } & { \longrightarrow } & { 0 }
\end{array} \quad \left\{\begin{array}{lll}
f_{+}(\omega) & \longrightarrow & \frac{r+1}{2 \sqrt{r}} \xi(\omega) \\
f_{-}(\omega) & \longrightarrow & \frac{r-1}{2 \sqrt{r}} \xi(\omega)
\end{array}\right.\right.
$$

where the limit $m_{h_{1}}, m_{h_{2}} \rightarrow \infty$ has been taken fixing the ratio $r=m_{h_{2}} / m_{h_{1}}$
the form factor appearing in the differential decay rate is

$$
G(\omega)=F_{D}(\omega)=\frac{2 \sqrt{r}}{r+1} f_{+}(\omega)=h_{+}(\omega)-\left(\frac{1-r}{r+1}\right) h_{-}(\omega) \quad \longrightarrow \quad \xi(\omega)
$$

lattice computation of the matrix elements,

having in mind this computation we experimented flavour-twisted boundary conditions in order to have a continuous momentum transfer in between one-particle states
$\psi\left(x+\mathbf{e}_{i} L\right)=e^{i \theta_{i}} \psi(x) \quad \theta_{0}=0$
$\int d \mathbf{p} e^{i \mathbf{p} \cdot\left(\mathbf{x}+\mathbf{e}_{i} L\right)} \psi(t ; \mathbf{p})=\int d \mathbf{p} e^{i\left(\mathbf{p} \cdot \mathbf{x}+\theta_{i}\right)} \psi(t ; \mathbf{p})$
$e^{i p_{i} L}=e^{i \theta_{i}}$
$p_{i}=\frac{\theta_{i}}{L}+\frac{2 \pi n}{L}, \quad n \in Z^{3}$

G. M. de Divitiis et al Phys. Lett. B 595 (2004) 408

ZeRo Collaboration Nucl. Phys. B 664 (2003) 276
P. F. Bedaque Phys. Lett. B 593, 82 (2004)
C. T. Sachrajda et al Phys. Lett. B 609, 73 (2005)
many others

lattice computation of the matrix elements, only 3-point functions

- let us introduce the following correlation functions in the Schrödinger Functional regularization

$$
\begin{aligned}
\mathcal{O}_{1} & =\frac{a^{6}}{L^{3}} \sum_{\mathbf{y}, \mathbf{z}} \bar{\zeta}_{h_{1}}\left(\mathbf{y} ; \theta_{1}\right) \gamma^{5} \zeta_{I}(\mathbf{z}) \\
\mathcal{O}_{2} & =\frac{a^{6}}{L^{3}} \sum_{\mathbf{y}^{\prime}, \mathbf{z}^{\prime}} \bar{\zeta}_{l}\left(\mathbf{y}^{\prime}\right) \gamma^{5} \zeta_{h_{2}}\left(\mathbf{z}^{\prime} ; \theta_{2}\right) \\
V^{\mu}(x) & =\bar{\psi}_{h_{2}}\left(x ; \theta_{2}\right) \gamma^{\mu} \psi_{h_{1}}\left(x ; \theta_{1}\right) \\
f_{\mathcal{M}_{2}} v^{\mu} \mathcal{M}_{1}\left(x_{0} ; \mathbf{p}_{1}, \mathbf{p}_{2}\right) & =\frac{a^{3}}{2} \sum_{\mathbf{x}}\left\langle\mathcal{O}_{2} V^{\mu}(x) \mathcal{O}_{1}\right\rangle
\end{aligned}
$$

- by assuming single state dominance one gets

$$
f_{\mathcal{M}_{2} v^{\mu} \mathcal{M}_{1}}\left(x_{0} ; \mathbf{p}_{1}, \mathbf{p}_{2}\right) \simeq \frac{\rho_{1}\left(\mathbf{p}_{1}\right) \rho_{2}\left(\mathbf{p}_{2}\right)}{4 \sqrt{E_{1} E_{2}}}\left\langle\mathcal{M}_{2}\left(\mathbf{p}_{2}\right)\left\|V^{\mu}\right\| \mathcal{M}_{1}\left(\mathbf{p}_{1}\right)\right\rangle e^{-x_{0} E_{1}} e^{-\left(T-x_{0}\right) E_{2}}
$$

lattice computation of the matrix elements, only 3-point functions

"single ratios": the crucial observation is that, by the conservation of the vector current one gets:

$$
f_{\mathcal{M} V^{0} \mathcal{M}}\left(x_{0} ; \mathbf{p}, \mathbf{p}\right) \simeq \frac{\rho(\mathbf{p})^{2}}{4 E} \underbrace{2 E}_{\left\langle\mathcal{M}(\mathbf{p})\left\|V^{0}\right\| \mathcal{M}(\mathbf{p})\right\rangle} e^{-T E}
$$

so that the matrix elements are given by (renormalization factors cancel in the ratio)

$$
\left\langle\mathcal{M}_{2}\left(\mathbf{p}_{2}\right)\left\|V^{\mu}\right\| \mathcal{M}_{1}\left(\mathbf{p}_{1}\right)\right\rangle=2 \sqrt{E_{1} E_{2}} \frac{f_{\mathcal{M}_{2}} v^{\mu} \mathcal{M}_{1}\left(x_{0} ; \mathbf{p}_{1}, \mathbf{p}_{2}\right)}{\sqrt{f_{\mathcal{M}_{2}} v^{0} \mathcal{M}_{2}}\left(x_{0} ; \mathbf{p}_{2}, \mathbf{p}_{2}\right) f_{\mathcal{M}_{1}} v^{0} \mathcal{M}_{1}\left(x_{0} ; \mathbf{p}_{1}, \mathbf{p}_{1}\right)}
$$

furthermore, in the mass diagonal case the form factors reduce to a single one

$$
\begin{aligned}
& \mathbf{p}_{1}=\mathbf{0} \quad \mathbf{p}_{2}=\left(\theta_{2} / L, 0,0\right) \\
& \omega=\frac{p_{2} \cdot p_{1}}{M_{2} M_{2}}=\frac{E_{2}}{M_{2}}
\end{aligned}
$$

$$
\left|\frac{f_{\mathcal{M}_{2} v^{1} \mathcal{M}_{2}}\left(x_{0} ; \mathbf{p}_{2}, \mathbf{0}\right)}{f_{\mathcal{M}_{2} v^{0} \mathcal{M}_{2}}\left(x_{0} ; \mathbf{p}_{2}, \mathbf{0}\right)}\right|=\frac{\sqrt{\omega^{2}-1}}{\omega+1}
$$

lattice computation of the matrix elements, only 3-point functions

"double ratios": our technique gives the same level of accuracy of the "double ratios" technique previously introduced by the Fermilab group:

$$
\begin{aligned}
R_{0}\left(x_{0}\right) & =\frac{f_{\mathcal{M}_{2}} v^{0} \mathcal{M}_{1}\left(x_{0} ; \mathbf{0}, \mathbf{0}\right) f_{\mathcal{M}_{1}} v^{0} \mathcal{M}_{2}\left(x_{0} ; \mathbf{0}, \mathbf{0}\right)}{f_{\mathcal{M}_{2}} v^{0} \mathcal{M}_{2}}\left(x_{0} ; \mathbf{0}, \mathbf{0}\right) f_{\mathcal{M}_{1}} v^{0} \mathcal{M}_{1}\left(x_{0} ; \mathbf{0}, \mathbf{0}\right) \\
& h_{+}(\omega=1) \mid \\
R_{k}\left(x_{0}, \mathbf{p}_{2}\right) & =\frac{f_{\mathcal{M}_{2}} v^{k} \mathcal{M}_{1}\left(x_{0} ; \mathbf{p}_{2}, \mathbf{0}\right) f_{\mathcal{M}_{2}} v^{0} \mathcal{M}_{2}\left(x_{0} ; \mathbf{p}_{2}, \mathbf{0}\right)}{f_{\mathcal{M}_{2}} v^{0} \mathcal{M}_{1}\left(x_{0} ; \mathbf{p}_{2}, \mathbf{0}\right) f_{\mathcal{M}_{2}} v^{k} \mathcal{M}_{2}\left(x_{0} ; \mathbf{p}_{2}, \mathbf{0}\right)} \simeq \\
& \simeq\left[1-\frac{h_{-}(\omega)}{h_{+}(\omega)}\right]\left[1+\frac{h_{-}(\omega)}{2 h_{+}(\omega)}(\omega-1)\right] \quad \omega \simeq 1
\end{aligned}
$$

but "single ratios" work well also at $\omega \neq 1$

numerical results, small volume

on the small volume, $L_{0}=0.4 \mathrm{fm}$, we have $m_{b}=m_{b}^{\text {phys }}$:

numerical results, small volume

on the small volume, $L_{0}=0.4 \mathrm{fm}$, we have $m_{b}=m_{b}^{\text {phys }}$:

numerical results, step scaling function

the step scaling functions are extremely flat

numerical results, volume 0.8 fm

numerical results, volume 0.8 fm

numerical results, volume 0.8 fm

experimental situation

experimental situation vs lattice at $\omega>1$

conclusions

- the step scaling method has been shown to work also in the case of matrix elements between one-particle states
- we have extracted the relativistic heavy-heavy form factors at $\omega>1$ with a numerical precision that is comparable with previous lattice calculations at $\omega=1$
- after having verified that residual finite volume effects are negligible we plan to extend the technique to $B_{(s)} \rightarrow D_{(s)}^{\star} \ell \nu$ (matrix elements already calculated...)
- bag parameters?
- unquench all...

outlooks

we have generated a big set of $N_{f}=2$ gauge configurations on big volumes and in the chiral regime:
L. Del Debbio, L. Giusti,M. Lüscher,R. Petronzio,N. T.

Table 1. Lattice parameters and simulation statistics

Run	Lattice	β	$c_{\text {aw }}$	$\kappa_{\text {aa }}$	$N_{\text {trj }}$	$N_{\text {aep }}$	$N_{\text {cfg }}$
$A_{1 a}$	32×24^{3}	5.6	0	0.15750	6300	100	64
$A_{1 b}$				0.15750	5070	30	169
A_{2}				0.15800	10800	100	109
$A_{3 a}$				0.15825	6100	100	62
$A_{3 b}$				0.15825	3800	100	38
A_{4}			0.15835	4950	50	100	
B_{1}	64×32^{3}	5.8	0	0.15410	5050	50	100
B_{2}				0.15440	5200	50	101
B_{3}				0.15455	5150	50	104
B_{4}				0.15462	5050	50	102
C_{1}	64×24^{3}	5.6	0	0.15800	3450	30	116
D_{1}	48×24^{3}	5.3	1.90952	0.13550	5150	50	104
D_{2}				0.13590	5130	30	171
D_{3}				0.13610	5040	30	168
D_{4}				0.13620	5010	30	168
D_{5}				0.13625	5040	30	169
E_{1}	64×32^{3}	5.3	1.90952	0.13550	5344	32	168
E_{2}				0.13590	5024	32	158
E_{3}				0.13605	5024	32	158

A: $a=0.0717(15) \mathrm{fm} L=1.721(36) \mathrm{fm}$

B: $a=0.0521(07) \mathrm{fm} L=1.667(22) \mathrm{fm}$

D: $a=0.0784(10) \mathrm{fm} L=1.882(24) \mathrm{fm}$
$E: a \simeq 0.078 \mathrm{fm} L \simeq 2.5 \mathrm{fm}$

outlooks

these configurations have been used in order to study the dependence of the mass and decay constant of the "pion" as a function of the sea quark mass and make contact with chiral perturbation theory
L. Del Debbio et al hep-lat/0610059 (accepted JHEP)
L. Del Debbio et al hep-lat/0701009 (accepted JHEP)

outlooks

- in the forthcoming months we plan to apply the step scaling method in the unquenched case $\left(N_{f}=2\right)$ in order to compute $m_{b}, f_{B}, V_{c b}, V_{u b}, B_{B}$ and renormalization factors (structure functions, etc.).
- the idea is to use the set of gauge configurations already generated in collaboration with Del Debbio et al. as the big volume
- and generate the small volumes after performing the appropriate matching of the parameters (a, m_{see}, etc.)

outlooks

- in the forthcoming months we plan to apply the step scaling method in the unquenched case $\left(N_{f}=2\right)$ in order to compute $m_{b}, f_{B}, V_{c b}, V_{u b}, B_{B}$ and renormalization factors (structure functions, etc.).
- the idea is to use the set of gauge configurations already generated in collaboration with Del Debbio et al. as the big volume
- and generate the small volumes after performing the appropriate matching of the parameters (a, m_{se}, etc.)

Q: how much it will cost?

A1: the calculation of the observables on the "big volumes" $\left(64 \times 32^{3}\right)$ takes (CGNE even/odd preconditioned)

$$
\begin{aligned}
& \text { single propagator } \simeq 2 \mathrm{~h} / \text { crate } \\
& \text { observables } \simeq 10 \times \text { single propagator } \times N_{\text {cnfg }} \simeq 3 \mathrm{y} / \text { crate }
\end{aligned}
$$

A2: the generation of the small volume gauge configurations is cheep w.r.t. than in the big volume case (Schrödinger Functional cutoff $1 / L$). The cost can be reasonably estimated to be the same as the calculation of the observables on the big volumes...

