Fundamental Parameters of QCD from the Lattice

Hubert Simma

Milano Bicocca, DESY Zeuthen

GGI Firenze, Feb 2007

Introduction Coupling Masses Summary and Outlook

向下 イヨト イヨト

QCD Lagrangian and Parameters

$$\mathcal{L}_{\text{QCD}}(g_0, m_0) = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \sum_{f=1}^{N_f} \overline{\psi}(i \not D - m_0^{(f)}) \psi$$

Renormalisation

At high energies: PT and \overline{MS}

$$\Phi(q,r) = C_0(q,r) + C_1(q,r,\mu) \cdot \alpha_{\overline{MS}}(\mu) + C_2(q,r,\mu) \cdot \alpha_{\overline{MS}}^2(\mu) + \cdots$$

$$\Rightarrow \alpha_{\overline{MS}}(\mu) \equiv \frac{g_{\overline{MS}}^2}{4\pi} \text{ (depends on } \Phi, \text{ choice of } \mu \approx q, \text{ and order of PT)}$$

 $\Rightarrow \overline{m}_{\overline{MS}}(\mu)$ (may require additional assumptions, e.g. QCD sum rules)

▲ □ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

Renormalisation

At low energies: Simulation at finite lattice spacing a

$$S_{\mathrm{W}} = \frac{1}{g_0^2} \sum_{p} tr(1 - U_p) + \sum_{f} \sum_{x} \overline{\psi}_x (D_W + m_0^{(f)}) \psi_x$$

Hadronic scheme

$$m_H^{exp} = \lim_{\mathrm{a} o 0} rac{(am_H)}{a(g_0)}$$

depending on choice of m_H ,

and on N_f ratios $m_{H'}/m_H$ (to be kept at physical values)

ゆ く き と く き と

Renormalization Group and A-Parameter

RGE for mass-independent scheme: $\overline{g} \equiv \overline{g}(\mu)$

$$\mu \frac{\partial \overline{g}}{\partial \mu} = \beta(\overline{g})$$

$$\bar{g} \xrightarrow{\sigma} - \bar{g}^{3} \left\{ b_{0} + b_{1} \bar{g}^{2} + b_{2} \bar{g}^{4} + \dots \right\}$$

 \blacktriangleright exact equation for "integration constant" Λ

$$\Lambda = \mu \left(b_0 \overline{g}^2 \right)^{-b_1/2b_0^2} \mathrm{e}^{-1/2b_0 \overline{g}^2} \exp\left\{ -\int_0^{\overline{g}} \mathrm{d}g \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right] \right\}$$

Renormalization Group and A-Parameter

RGE for mass-independent scheme: $\overline{g} \equiv \overline{g}(\mu)$

$$\mu \frac{\partial \overline{g}}{\partial \mu} = \beta(\overline{g})$$

$$\bar{g} \rightarrow 0 \qquad -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \ldots \right\}$$

exact equation for "integration constant" Λ

$$\Lambda = \mu \left(b_0 \overline{g}^2 \right)^{-b_1/2b_0^2} \mathrm{e}^{-1/2b_0 \overline{g}^2} \exp\left\{ -\int_0^{\overline{g}} \mathrm{d}g \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right] \right\}$$

trivial scheme dependence

$$\alpha_{a} = \alpha_{b} + \frac{c_{ab}}{c_{ab}} \alpha_{b}^{2} + O(\alpha_{b}^{3}) \implies \Lambda_{a}/\Lambda_{b} = e^{\frac{c_{ab}}{(4\pi b_{0})}}$$

 use a suitable physical coupling (scheme) and non-perturbative β(ḡ)

Connecting Hadronic and High-Energy Physics

<u>Problem</u>: Large scale differences $a^{-1} \gg \mu_{PT} \gg \mu_H \gg L^{-1}$

Connecting Hadronic and High-Energy Physics

Solution: Intermediate Renormalisation Scheme

Use Schrödinger Functional (SF) as intermediate scheme

Calculate relation between low- and high-energy quantities in QCD with $N_f = 0, 2, ...$ flavors:

- define and compute NP renormalisation and running
- implementation and test of Symanzik improvement
- perform reliable continuum limit
- verify that systematic errors are under control

Not only applicable to fundamental parameters, but also to effective operators $(B_K, ...)$

向下 イヨト イヨト

... initiated through key work and ideas of M. Lüscher et. al

Univ. Bern	S. Dürr			
CERN	M. Della Morte, C. Pena			
Univ. Colorado	R. Hoffmann			
DESY, Zeuthen	D. Guazzini, B. Leder, H.S., R. Sommer			
Univ. Dublin	S. Sint			
Univ. Edinburgh	J. Wennekes			
Humboldt Univ. Berlin	J. Rolf, O. Witzel, U. Wolff			
NIC, Zeuthen	K. Jansen, I. Wetzorke, A. Shindler			
Univ. Mainz	F. Palombi, H. Wittig			
MIT	H. Meyer			
Univ. Münster	P. Fritzsch, J. Heitger			
MPI München	P. Weisz			
Univ. Roma II	P. Dimopoulos, R. Frezzotti, M. Guagnelli, A. Vladikas			
Univ. Southampton	A. Jüttner			
Univ. Wuppertal	F. Knechtli			
http://www-zeuthen.desy.de/alpha/				

- 4 回 ト - 4 回 ト - 4 回 ト

Э

Definition of Schrödinger Functional

- finite physical volume L^4 , T = L
- Dirichlet b.c. $C(\eta)$, $C'(\eta)$ at $x_0 = 0, T$
- periodic b.c. in space (up to phase θ)

Definition of Schrödinger Functional

- finite physical volume L^4 , T = L
- Dirichlet b.c. $C(\eta)$, $C'(\eta)$ at $x_0 = 0, T$
- periodic b.c. in space (up to phase θ)

$$Z_{SF}(C,C')=e^{-\Gamma(\eta)}=\int_{ ext{fields}}e^{-S(\eta)}$$

renormalised coupling

$$\left| \frac{\partial \Gamma(\eta)}{\partial \eta} \right|_{\eta=0} \equiv \frac{k}{\overline{g}_{SF}^2(L)}$$

⁽LxLxL box with periodic b.c.)

Definition of Schrödinger Functional

- finite physical volume L^4 , T = L
- Dirichlet b.c. $C(\eta)$, $C'(\eta)$ at $x_0 = 0, T$
- periodic b.c. in space (up to phase θ)

$$Z_{SF}(C,C')=e^{-\Gamma(\eta)}=\int_{ ext{fields}}e^{-S(\eta)}$$

renormalised coupling

$$\left. \frac{\partial \Gamma(\eta)}{\partial \eta} \right|_{\eta=0} \equiv \frac{k}{\overline{g}_{SF}^2(L)}$$

 $m_{PCAC} = 0$

renormalisation scale

 $\mu = 1/L$

(LxLxL box with periodic b.c.)

Properties of Schrödinger Functional

- NP definition in continuum
- ▶ \overline{g}_{SF} is local (plaquette-like) observable on the lattice
- \blacktriangleright spectral gap $\sim 1/L$ allows simulation with massless quarks
- known perturbative expansion

(can use PT for running at very large μ after checking that it coincides with NP running)

向下 イヨト イヨト

Step Scaling Function (SSF)

► "discrete" β-function

$$\sigma(\overline{g}^2(L)) \equiv \overline{g}^2(2L)$$

determines NP running

$$u_{k} = \overline{g}^{2} (L_{max}/2^{k})$$
$$\downarrow \\ u_{0} = \overline{g}^{2} (L_{max})$$

computation on the lattice

$$\Sigma(u, a/L) = \sigma(u) + O(a/L)$$

御 と く ヨ と く ヨ と … ヨ

SSF for $N_f = 2$

イロン イヨン イヨン イヨン

æ

Simulation Parameters of SSF

$$(g_0, a/L) \rightarrow u \equiv \overline{g}^2(L)$$

<ロ> (四) (四) (三) (三) (三)

Simulation Parameters of SSF

Repeat for decreasing $a/L = 1/6, 1/8, \ldots \rightarrow$ continuum limit

(ロ) (同) (E) (E) (E)

Precision test of the continuum extrapolation

 \Rightarrow procedure of continuum limit (with NP improved SF) is safe

Conversion of SSF to Beta Function

- clear effect of N_f
- ▶ strong deviation from 3-loop PT for $\alpha_{SF} \ge 0.25$
- without indication from within PT

→ Ξ →

Running of α

$N_f = 2$, NP + PT, SF scheme

error bars smaller than symbol size

Experiment + PT, \overline{MS} scheme

イロト イヨト イヨト イヨト

3

Matching to Hadronic Scheme

SSF yields precise
$$\Lambda L_{max}$$
 (e.g. 7 % on Λ)

$$N_f = 0, \quad u_{max} = 3.48: \quad ln(\Lambda_{\overline{MS}}L_{max}) = -0.84(8)$$

 $N_f = 2, \quad u_{max} = 4.61: \quad ln(\Lambda_{\overline{MS}}L_{max}) = -0.40(7)$

For Λ in MeV need scale from aF_K (or aF_{π})

$$\Lambda = (\Lambda L_{max}) \lim_{g_0 \to 0} \underbrace{\left(\frac{a}{L_{max}}\right)}_{\text{SF}} \cdot \underbrace{\frac{F_K^{exp}}{(aF_K)}}_{\text{largeV}}$$

keeping N_f suitable flavoured mass ratios m_H/F_K fixed.

N.B.: "standard" values of $\beta = 6/g_0^2$ may need non-integer a/L_{max} from interpolation of $u(g_0, a/L) = u_{max}$

 \dots $N_f = 2$ simulations with large volumes running on apeNEXT

Setting the Scale by r₀

• Currently need to use $r_0 \approx 0.5$ fm

$$\Lambda = (\Lambda L_{max}) \left(\frac{a}{L_{max}}\right) \left(\frac{r_0}{a}\right) \frac{1}{0.5 fm}$$

e.g. with QCDSF data for r_0/a (extrapolated to chiral limit)

• Summary of $\Lambda_{\overline{MS}} r_0$ for different N_f

	$N_f = 0$	$N_f = 2$	$N_f = 4$	$N_f = 5$
SF (ALPHA)	0.60(5)	0.62(6)		_
DIS (NLO)	_	_	0.57(8)	_
world av.		—	0.74(10)	0.54(8)

回り くほり くほり ……ほ

RGI Mass Parameter

RGE in mass-independent scheme

$$\begin{aligned} \mu \frac{\partial \overline{m}}{\partial \mu} &= \tau(\overline{g}) \cdot \overline{m} \\ & \bar{g}^{\to 0} \\ & -\bar{g}^2 \left\{ d_0 + d_1 \bar{g}^2 + d_2 \bar{g}^4 + \ldots \right\} \end{aligned}$$

RGI mass (integration constant of RGE)

$$\begin{aligned} \mathcal{M}^{(f)} &= \lim_{\mu \to \infty} (2b_0 \overline{g})^{-d_0/2b_0} \overline{m}^{(f)}(\mu) \\ &= \overline{m}^{(f)}(\mu) \cdot (2b_0 \overline{g}^2)^{-d_0/2b_0} \times \exp\left\{-\int_0^{\overline{g}} \mathrm{d}g \left[\frac{\tau(g)}{\beta(g)} - \frac{d_0}{b_0 g}\right] \right. \end{aligned}$$

물 제 문 제 문 제

RGI Mass Parameter

RGE in mass-independent scheme

$$\begin{aligned} \mu \frac{\partial \overline{m}}{\partial \mu} &= \tau(\overline{g}) \cdot \overline{m} \\ & \bar{g}_{\sim}^{\to 0} & -\bar{g}^2 \left\{ d_0 + d_1 \bar{g}^2 + d_2 \bar{g}^4 + \ldots \right\} \end{aligned}$$

RGI mass (integration constant of RGE)

$$\begin{aligned} \mathcal{M}^{(f)} &= \lim_{\mu \to \infty} (2b_0 \overline{g})^{-d_0/2b_0} \overline{m}^{(f)}(\mu) \\ &= \overline{m}^{(f)}(\mu) \cdot (2b_0 \overline{g}^2)^{-d_0/2b_0} \times \exp\left\{-\int_0^{\overline{g}} \mathrm{d}g \left[\frac{\tau(g)}{\beta(g)} - \frac{d_0}{b_0 g}\right] \right. \end{aligned}$$

- scale and scheme independent parameter
- use non-perturbative $\beta(\overline{g})$ and $\tau(\overline{g})$

Renormalised Quark Mass

In a mass-independent scheme

$$\overline{m}^{(f)}(\mu) = \underbrace{Z_m(\mu a, g_0)}_{\text{bare}} \cdot m^{(f)}_{\text{bare}}(g_0)$$

flavour independent

can solve running once and for all

$$\frac{M^{(f)}}{M^{(j)}} = \frac{\overline{m}^{(f)}(\mu)}{\overline{m}^{(j)}(\mu)} = \frac{m^{(f)}_{\text{bare}}(g_0)}{m^{(j)}_{\text{bare}}(g_0)}$$

► defining $m_{\text{bare}}^{(f)}$ e.g. by PCAC relation $\partial_{\mu}A_{\mu}^{(f)} = 2 m_{PCAC}^{(f)} P^{(f)}$

$$Z_m(\mu a, g_0) = \frac{Z_A(g_0)}{Z_P(g_0, L/a)}$$

通り くらり くらり 一日

Definition of Z_P in the SF

$$T = L, \ C = C' = 0$$
$$\theta = 1/2, \ m = 0$$
$$Z_P(L) \equiv c \frac{\sqrt{f_1}}{f_P(L/2)}$$

・ロン ・四と ・ヨン ・ヨン

æ

 $= 1 + O(g^2)$

SSF for Quark Mass

$$\Sigma_P(u, a/L) \equiv \left. \frac{Z_P(2L)}{Z_P(L)} \right|_{\overline{g}^2(L)=u}$$

$$\sigma_P(u) \equiv \lim_{a\to 0} \Sigma_P(u, a/L)$$

⊡ ▶ < ≣ ▶

< ≣

NP Running of the Quark Mass

solve combined recursion for $\sigma_P(u)$ and $\sigma(u)$ (and PT from $L_{max}/2^k$ to " ∞ " for k = 6)

$$N_f = 2$$
, $u_{max} = 4.61$: $\frac{M_{RGI}}{\overline{m}(\mu)} = 1.297(16)$
Hubert Simma Fundamental Parameters of QCD from the Lattice

< ≣.

Determination of the Quark Masses

$$M_{\rm RGI}^{(f)} = \frac{M_{\rm RGI}}{\overline{m}(\mu)} \cdot \lim_{g_0 \to 0} Z_m(g_0, a\mu) \, m_0^{(f)}(\kappa^f, g_0, a/L)$$

Only $m_0^{(f)}$ is flavour-dependent, i.e. must be determined by matching (a ratio of) flavoured hadron masses

- ▶ *M_s*: *m_K*
- M_c : m_D (so far only $N_f = 0$)
- ▶ *M_b*: *m_B* (after matching to NP renormalised HQET)

Charm Quark Mass $(N_f = 0)$

- ▶ large mass renders *O*(*a*) improvement essential
- different definitions of $m_0^{(c)}$ differ by $O(a^2 m_c^2)$ errors
- difficult continuum extrapolation

Strange Quark Mass ($N_f = 2$)

determine reference quark mass m_{ref}, s.t.

 $m_{\mathrm{PS}}(m_{ref}, m_{ref}) = m_K$

- from QCDSF data for r₀/a and am_{PS} determine κ_{ref}(β) at β = 5.2, 5.29, 5.4
- computing $\overline{m}(L_{max})$ at $\kappa_{ref}(\beta)$ yields

 $M_{\rm ref} = 72(3)(13) \,\,{
m MeV} \,\,\,(\beta = 5.4)$

周下 イヨト イヨト 二日

Strange Quark Mass (cont.)

• lowest order 3-flavour χ PT

$$m_{K}^{2} = \frac{1}{2} \left(m_{K^{+}}^{2} + m_{K^{0}}^{2} \right) = (\hat{M} + M_{s}) B_{\text{RGI}}$$

yields for 2 degenerate quarks

$$2M_{\rm ref}=(\hat{M}+M_s)$$

▶ use $M_s/\hat{M} = 24.4(1.5)$ [Leutwyler 1996], i.e. $M_s = 48/25M_{ref}$ $M_s = 138(5)(26)$ MeV, or $\overline{m}_s^{\overline{MS}}(2\text{GeV}) = 97(23)$ MeV

伺い イヨト イヨト 三日

Simulation Algoritms

Various algorithmic improvements investigated on APE, e.g.

- Polynomial HMC
- Hasenbusch trick
- Multiple time scale integration
- Trajectory lengths

[Lüscher, Urbach et al.]

[Frezzotti, Jansen]

< ∃ >

Main Steps

year	$N_f = 0$	hep-lat
1993	SSF running coupling	9309005, 0110201
1996	NP improvement	9609035,
1996	Z_A, Z_V	9611015
1997	SSF running mass	9709125, 9810063
1998	L_{ref}/r_0	9806005
	$N_f = 2$	
1997	NP improvement	9709022,
2001	SSF running coupling	0105003, 0411025
2005	Z_A, Z_V	0505026
2005	SSF running mass	0507035
?	$L_{ref} \cdot F_{\pi}$	

<ロ> (四) (四) (三) (三) (三)

Computing Resources

ALPHA is running (almost) exclusively on APE since 1994!

- significant fraction of APE installation at DESY
- contribution to APE development (O(25) man years out of ALPHA, QCDSF, NIC)
- early physics codes for qualification of APEmille/apeNEXT
- ▶ O(80) publications based on numerical results from APE

Outlook

Challenges:

- matching to hadronic scheme (Λ in MeV) for $N_f = 2$
- heavy quark physics (HQET, M_c for N_f = 2, f_B, M_b, B decays, ...)

►
$$N_f > 2$$

... unlikely to be completed on apeNEXT

向下 イヨト イヨト

3