Hot and Dense QCD on the lattice

Frithjof Karsch, BNL

Introduction:

 $T, gT, g^2T,...$ screening and the running coupling

Bulk thermodynamics

 T_c and the equation of state in (2+1)-flavor QCD

with an almost realistic quark mass spectrum

Thermodynamics at non-zero baryon number density

hadronic fluctuations

isentropic equation of state

Conclusions

continuous transition for small chemical potential and small quark masses

Non-perturbative QGP

- Perturbation theory provides a hierachy of length scales
 - $T \gg gT \gg g^2T...\Rightarrow$ guiding principle for effective theories,

resummation, dimensional reduction...

Early lattice results show that $g^2(T) > 1$ even at $T \sim 5T_c$

G. Boyd et al, NP B469 (1996) 419: SU(3) thermodynamics..

...one has to conclude that the temperature dependent running coupling has to be large, $g^2(T)\simeq 2$ even at $T\simeq 5T_c$

- Ithe Debye screening mass is large close to T_c
- the spatial string tension does not vanish above T_c

 $\sqrt{\sigma_s} \neq 0 \Rightarrow$ the QGP is "non-perturbative" up to very high T

Screening of heavy quark free energies - remnant of confinement above T_c -

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

singlet free energy F₁ [MeV] 1000 0.76T • $T \simeq T_c$: screening for 0.81T $r \gtrsim 0.5$ fm 0.90T 500 $F_1(r,T) \sim rac{lpha(T)}{r} e^{-\mu(T)r}$ +const.4.01T_c r [fm] -500 0.5 1.5 2 2.5 3 1 0 4lpha(r,T=0)• $F_1(r,T)$ follows linear rise of $V_{\bar{q}q}(r,T=0) =$ for $T \lesssim 1.5 T_c$, $r \lesssim 0.3$ fm F. Karsch, apeNEXT, Florence 2007 - p.4/32

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

singlet free energy defines a running coupling:

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

singlet free energy defines a running coupling:

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

singlet free energy defines a running coupling:

Non-perturbative Debye screening

- Ieading order perturbation theory: $m_D = g(T)T\sqrt{1 + \frac{n_f}{6}}$
- $T_c < T \lesssim 10T_c$: non-perturbative effects are well represented by an "A-factor": $m_D \equiv Ag(T)T, \ A \simeq 1.5$

The spatial string tension

Non-perturbative, vanishes in high-T perturbation theory:

$$\sqrt{\sigma_s} = -\lim_{R_x, R_y o \infty} \ln rac{W(R_x, R_y)}{R_x R_y}$$

 c_M : 3-d SU(3), LGT $\frac{\sqrt{\sigma_s}}{q^2(T)T} = c_M f_M(g(T)) \;,\; c_M = 0.553(1)_{g_M} \equiv g^2 f_M$: dim. red. pert. th. 1.2 $g^2(T) \simeq 2 \iff \alpha(T) \simeq 0.16$ $T/\sigma^{1/2}$ dimensional reduction works for $T \gtrsim 2T_c$ 4-d SU(3) and QCD - c_M (almost) flavor independent - $g^2(T)$ shows 2-loop running 0.8 c = 0.566(13) [SU(3)] c = 0.594(39) [QCD] 0.6 N_€=0 T/T_{c} G. Boyd et al. NP B469 (1996) 419 N_f=2+1 ⊢ 0.4 **RBC-Bielefeld**, preliminary 2 4 1 F. Karsch, apeNEXT, Florence 2007 – p.7/32

$\mu = 0$: Equation of State and T_c

strong deviations from ideal gas behavior ($\epsilon = 3p$) for $T_c \leq T \sim 3T_c$ and even at high T

- $T_c = (173 \pm 8 \pm sys)$ MeV
 weak quark mass and flavor
 dependence
- improved staggered fermions but still on rather coarse lattices: $N_{ au} = 4$, i.e. $a^{-1} \simeq 0.8$ GeV with moderately light quarks FK, E. Laermann, A. Peikert, Nucl. Phys. B605 (2001) 579

EoS and T_c

- Goal: QCD thermodynamics with realistic quark masses and controlled extrapolation to the continuum limit T_c , EoS, $\mu_q > 0$, ...
 - use an improved staggered fermion action that removes $\mathcal{O}(a^2)$ errors in bulk thermodynamic quantities and reduces flavor symmetry breaking inherent to the staggered formulation

RBC-Bielefeld choice: p4-action + 3-link smearing (p4fat3)

MILC: Naik-action + (3,5,7)-link smearing (asqtad);

Wuppertal: standard staggered + exponentiated 3-link smearing (stout)

EoS and T_c

- Goal: QCD thermodynamics with realistic quark masses and controlled extrapolation to the continuum limit T_c , EoS, $\mu_q > 0$, ...
 - use an improved staggered fermion action that removes $\mathcal{O}(a^2)$ errors in bulk thermodynamic quantities and reduces flavor symmetry breaking inherent to the staggered formulation

RBC-Bielefeld choice: p4-action + 3-link smearing (p4fat3)

P4-action: smooth high-T behavior for bulk thermodynamics on lattice with temporal extent N_{τ}

$$p(N_{ au})/T^4 = p_{SB}^{cont}/T^4 + \mathcal{O}(N_{ au}^{-4})^{rac{1.4}{1.2}}$$

p4&Naik: similarly small cut-off dependence of renormalized Polyakov loops and quark number susceptibilities

Thermodynamics on QCDOC and apeNEXT

US/RBRC QCDOC 20.000.000.000 ops/sec

20.000.000.000 ops/sec 5.000.000.000 ops/sec

• critical temperature

- equation of state
- finite density QCD

BI – apeNEXT

EoS and T_c

- Goal: QCD thermodynamics with realistic quark masses and controlled extrapolation to the continuum limit T_c , EoS, $\mu_q > 0$, ...
 - use an improved staggered fermion action that removes O(a²) errors in bulk thermodynamic quantities and reduces flavor symmetry breaking inherent to the staggered formulation
 RBC-Bielefeld choice: p4-action + 3-link smearing (p4fat3)
 - use the newly developed RHMC algorithm to remove 'step-size errors' in the numerical simulation
 - perform simulations with (3-4) different light quark masses corresponding to 150 MeV $\leq m_{\pi} \leq 500$ MeV at 2 different values of the lattice cut-off controlled by the spatial lattice size $N_{\tau} = 4$, 6 to perform the chiral and continuum extrapolation

previous results with p4-action: 2-flavor QCD: $N_{ au}=4,\ m_{\pi}\simeq 770$ MeV

crossover rather than phase transition:

need to determine location of the transition from various susceptibilities:

(disconnected part of the) light and strange quark chiral susceptibility; Polyakov loop and quark number susceptibility,...

thermodynamic limit:

need to control finite volume effects;

continuum limit:

need to analyze cut-off dependence in T > 0 and T = 0 calculations;

- Iarge statistics; several ten thousand trajectories
- find little volume dependence of location of transition point
- overall scale setting using T = 0 potential parameter; find weak cut-off dependence

Chiral susceptibility, $N_{ au}=4,~6$

- weak volume dependence
- peak location consistent with that of Polyakov loop susceptibility and maximum of quartic fluctuation of quark number density

Chiral and L susceptibility, $N_ au=4$

Chiral and L susceptibility, $N_{ au}=4$

2.5% error band \Leftrightarrow 5 MeV

data sample for smallest quark mass on $16^3 \times 4$ lattice

$oldsymbol{eta}$	no. of conf.
3.2900	38960
3.3000	40570
3.3050	32950
3.3100	42300
3.3200	39050

200,000/10 trajectories enter Ferrenberg-Swendsen sample

Chiral and L susceptibility, $N_{ au}=4$

2.5% error band \Leftrightarrow 5 MeV

data sample for smallest quark mass on $16^3 \times 4$ lattice

$oldsymbol{eta}$	no. of conf.
3.2900	38960
3.3000	40570
3.3050	32950
3.3100	42300
3.3200	39050

Ambiguities in locating the crossover point

0.025 $\beta_L - \beta_l$ $\beta_L - \beta_l$ $\beta_L - \beta_l$ 0.020 $\beta_l - \beta_s$ $\beta_l - \beta_s$ $\beta_l - \beta_s$ 0.015 $8^{3}x4$ 16³x4 $16^{3}x6$ 0.010 differences of pseudo-critical couplings 0.005 locating peaks in 0.000 light (β_l), strange (β_s) and Polyakov loop (β_L) -0.005 susceptibilities m_l/m_s m_l/m_s m_l/m_s -0.010 0.5 0 0.5 0 0.5 0 2.5% ($N_{\tau} = 4$) or 4% ($N_{\tau} = 6$) error band \Leftrightarrow 5 or 8 MeV

differences in the location of pseudo-critical couplings are taken into account as systematic error

T = 0 scale setting using the heavy quark potential

use r_0 or string tension to set the scale for $T_c = 1/N_{\tau}a(\beta_c)$

no significant cut-off dependence when cut-off varies by a factor 4

i.e. from the transition region on $N_{\tau} = 4$ lattices to that on $N_{ au} = 16$ lattices !!

$\Rightarrow T_c r_0, T_c/\sqrt{\sigma}$

extrapolation to chiral and continuum limit

 $(r_0 T_c)_{N_{\tau}} = (r_0 T_c)_{cont.} + b (m_{PS} r_0)^d + c/N_{\tau}^2$

(d=1.08 (O(4), 2nd ord.), d=2 (1st ord.))

 $\Rightarrow r_0 T_c = 0.456(7)_{-1}^{+3} , \quad T_c / \sqrt{\sigma} = 0.408(7)_{-1}^{+3} \text{ at phys. point}$ $\Rightarrow T_c = 192(7)(4) \text{ MeV}$

(1st error: stat. error on β_c and r_0 ; 2nd error: $N_{ au}^{-2}$ extrapolation) EXT, Florence 2007 - p.17/32

staggered fermions $N_{ au}=4,6$

RBC-Bielefeld (p4fat3 (p4))

staggered fermions $N_{ au}=4,6$

- RBC-Bielefeld (p4fat3 (p4)) vs. MILC (asqtad (Naik)) and Wuppertal (stout (stand. staggered))
- **asqtad** results for $N_{\tau} = 4$ and 6 agree with p4 results within statistical errors; (C.Bernard et al., PR D71, 034504 (2005))
- results obtained with stout action for $N_{\tau} = 4$ and 6 are about 15% lower; β_c from $N_{\tau} = 8$, 10 covers (151 - 176) MeV; (Y. Aoki et al., hep-lat/0609068)

asqtad data for $T_c r_1$ rescaled with $r_0/r_1 = 1.4795$

asqtad: continuum extrapolation:

quoted T_c from $m_q/m_s \leq 1$ and fit in $m_\pi/m_
ho$ yields $T_c = 169(12)(4)$ MeV

using $m_q/m_s \leq 0.4$ and fit in $m_\pi r_0$ yields $T_c = 173(13)(4)$ MeV

staggered fermions $N_{ au}=4,6$ and Wilson fermions $N_{ au}=6-10$

- RBC-Bielefeld (p4fat3 (p4)) vs. MILC (asqtad (Naik)) and Wuppertal (stout (stand. staggered))
- T_c from Wilson/Clover fermions so far only for $m_{ps}r_0 > 1.5$; consistent with staggered results
- Wilson for $N_{\tau} \geq 6$ show no significant cout-off effects (V.G. Bornyakov et al., hep-lat/0509122)

scale setting uncertainties:

staggered: $r_0 = 0.469(7)$ fm (MILC + heavy quark spec.)

Clover: $r_0 = 0.516(21)$ fm (CP-PACS+JLQCD, light quark spec.)

extrapolations to phys. point

- RBC-Bielefeld (p4fat3 (p4)) vs. Wuppertal (stout (stand. staggered))
- I results for $N_{ au} = 4, 6$ differ by 15% but show similar cut-off dependence
- **stout** results for different observables no longer consistent with each other for $N_{ au} = 8, 10$

overall scale set with $r_0 = 0.469$ fm

Calculating the EoS on lines of constant physics (LCP)

The pressure

$$\begin{split} \frac{p}{T^4} \Big|_{\beta_0}^{\beta} &= N_{\tau}^4 \int_{\beta_0}^{\beta} d\beta' \left[\frac{1}{N_{\sigma}^3 N_t} (\langle S_g \rangle_0 - \langle S_g \rangle_T) \right. \\ &\left. - \left(2(\langle \bar{\psi}\psi \rangle_{l0} - \langle \bar{\psi}\psi \rangle_{lT}) + \frac{\hat{m}_s}{\hat{m}_l} (\langle \bar{\psi}\psi \rangle_{s0} - \langle \bar{\psi}\psi \rangle_{sT}) \right) \left(\frac{\partial \hat{m}_l}{\partial \beta'} \right)_{\hat{m}_s/\hat{m}_l} \right. \\ &\left. - \hat{m}_l \left(\langle \bar{\psi}\psi \rangle_{s0} - \langle \bar{\psi}\psi \rangle_{sT} \right) \left(\frac{\partial \hat{m}_s/\hat{m}_l}{\partial \beta'} \right)_{\hat{m}_l} \right] \end{split}$$

The interaction measure for $N_f = 2 + 1$

$$\begin{aligned} \frac{\epsilon - 3p}{T^4} &= T \frac{\mathrm{d}}{\mathrm{d}T} \left(\frac{p}{T^4} \right) = \left(a \frac{\mathrm{d}\beta}{\mathrm{d}a} \right)_{LCP} \frac{\partial p/T^4}{\partial \beta} \\ &= \left(\frac{\epsilon - 3p}{T^4} \right)_{gluon} + \left(\frac{\epsilon - 3p}{T^4} \right)_{fermion} + \left(\frac{\epsilon - 3p}{T^4} \right)_{\hat{m}_s/\hat{m}_l} \end{aligned}$$

$(\epsilon-3p)/T^4$ on LCP

• Using an RG-inspired 2-loop β -function underestimates $(\epsilon - 3p)/T^4$ in the transition region and stretches the temperature interval in the low temperature regime artifically, i.e. makes the transition region look broader than it is.

differences in the transition region partly arise from differences in the β -functions used in the crossover region

overall good agreement

Note:

T-scale is not dependent on T_c determination

asqtad data: C. Bernard et al., hep-lat/0611031

Energy density and pressure $N_{ au}=4,\ 6$

RBC-Bielefeld vs. MILC: the RBC-Bi energy/entropy density on $N_{\tau} = 4$ lattices rises more steeply;

direct consequence of the use of a non-perturbative β -function directly deduced from calculated r_0/a values

overall good agreement for $N_{\tau} = 4$, 6,
Note: *T*-scale does not depend on T_c determination!!

Lattice EoS: energy density \Leftrightarrow temperature \Rightarrow conditions for heavy $q\bar{q}$ bound states

 $\begin{array}{l} \mathsf{LGT:}\ T_c\simeq 190\ \mathsf{MeV}\\ T=T_c:\ \epsilon_c/T_c^4\simeq 6\ \Rightarrow\ \epsilon_c\simeq 1\ \mathsf{GeV/fm^3}\\ T\ \geq\ 1.5T_c:\ \epsilon/T^4\simeq (13-14)\\ T=1.5T_c:\ \epsilon\simeq 11\ \mathsf{GeV/fm^3}\\ T=2.0T_c:\ \epsilon\simeq 35\ \mathsf{GeV/fm^3}\\ \Downarrow\end{array}$

observable consequences: J/ψ suppression

 $R_{Au}\simeq 7$ fm; $au_0 \simeq 1 \, {
m fm}$ $\langle E_T
angle \simeq 1 \ {
m GeV}$ $dN/dy \simeq 1000$ \downarrow $\epsilon_{Bj}\simeq 7~{
m GeV/fm^3}$ maybe: $au_0 \simeq 0.5$ fm \downarrow $\epsilon_{Bj} \simeq 14 \, {\rm GeV/fm^3}$

RHIC

Lattice EoS: energy density \Leftrightarrow temperature \Rightarrow conditions for heavy $q\bar{q}$ bound states

LGT: $T_c \simeq 190 \text{ MeV}$ $T = T_c$: $\epsilon_c / T_c^4 \simeq 6 \Rightarrow \epsilon_c \simeq 1 \text{ GeV/fm}^3$ $T \ge 1.5T_c$: $\epsilon / T^4 \simeq (13 - 14)$ $T = 1.5T_c$: $\epsilon \simeq 11 \text{ GeV/fm}^3$ $T = 2.0T_c$: $\epsilon \simeq 35 \text{ GeV/fm}^3$ ψ χ_c, ψ' suppression at RHIC

direct J/ψ suppression unlikely

 \downarrow

 $S(J/\psi) \simeq 0.6 + 0.4 S(\chi_c)$ (assume $S(\chi_c) \simeq S(\psi')$)

RHIC

 $R_{Au}\simeq 7$ fm; $au_0 \simeq 1 \, {
m fm}$ $\langle E_T
angle \simeq 1 \ {
m GeV}$ $dN/dy \simeq 1000$ \downarrow $\epsilon_{Bj}\simeq 7~{
m GeV/fm^3}$ maybe: $au_0 \simeq 0.5$ fm \downarrow $\epsilon_{Bj}\simeq 14~{
m GeV/fm^3}$

Bulk thermodynamics with non-vanishing chemical potential

$$Z(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu}) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu})}$$
$$= \int \mathcal{D}\mathcal{A} \left[det \ M(\boldsymbol{\mu})\right]^f e^{-S_G(\mathbf{V}, \mathbf{T})}$$
$$\uparrow \text{complex fermion determinant;}$$

Bulk thermodynamics with non-vanishing chemical potential

$$Z(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu}) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu})}$$
$$= \int \mathcal{D}\mathcal{A} \left[det \ M(\boldsymbol{\mu})\right]^f e^{-S_G(\mathbf{V}, \mathbf{T})}$$
$$\uparrow \text{complex fermion determinant;}$$

ways to circumvent this problem.

- reweighting: works well on small lattices; requires exact evaluation of detM
 Z. Fodor, S.D. Katz, JHEP 0203 (2002) 014
- Taylor expansion around μ = 0: works well for small μ;
 C. R. Allton et al. (Bielefeld-Swansea), Phys. Rev. D66 (2002) 074507
 R.V. Gavai, S. Gupta, Phys. Rev. D68 (2003) 034506
- imaginary chemical potential: works well for small μ; requires analytic continuation Ph. deForcrand, O. Philipsen, Nucl. Phys. B642 (2002) 290
 M. D'Elia and M.P. Lombardo, Phys. Rev. D64 (2003) 014505

Energy and Entropy density for $\mu_q > 0$

S. Ejiri, F. Karsch, E. Laermann and C. Schmidt, hep-lat/0512040

Thermodynamics: (NB: continuum $\hat{m} \equiv m_q$ lattice $\hat{m} \equiv m_q a$, implicit T-dependence)

• pressure
$$\frac{p}{T^4} \equiv \frac{1}{VT^3} \ln Z(T, \mu_q) = \sum_{n=0}^{\infty} c_n(T, \hat{m}) \left(\frac{\mu_q}{T}\right)^n$$

energy density from "interaction measure"

$$\frac{\epsilon - 3p}{T^4} = \sum_{n=0}^{\infty} c'_n(T, \hat{m}) \left(\frac{\mu_q}{T}\right)^n , \ \frac{c'_n(T, \hat{m})}{\mathrm{d}T} \equiv T \frac{\mathrm{d}c_n(T, \hat{m})}{\mathrm{d}T}$$

entropy density

$$\frac{s}{T^3} \equiv \frac{\epsilon + p - \mu_q n_q}{T^4} = \sum_{n=0}^{\infty} \left((4-n)c_n(T,\hat{m}) + c'_n(T,\hat{m}) \right) \left(\frac{\mu_q}{T}\right)^n$$
F. Karsch, apeNEXT, Florence 2007 - p.26/32

Bulk thermodynamics for small μ_q/T on $16^3 imes 4$ lattices

Taylor expansion of pressure up to $\mathcal{O}\left((\mu_q/T)^6\right)$

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu_q}{T}\right)^n \simeq c_0 + c_2 \left(\frac{\mu_q}{T}\right)^2 + c_4 \left(\frac{\mu_q}{T}\right)^4 + c_6 \left(\frac{\mu_q}{T}\right)^6$$

quark number density
$$\frac{n_q}{T^3} = 2c_2 \frac{\mu_q}{T} + 4c_4 \left(\frac{\mu_q}{T}\right)^3 + 6c_6 \left(\frac{\mu_q}{T}\right)^5$$
quark number susceptibility $\frac{\chi_q}{T^2} = 2c_2 + 12c_4 \left(\frac{\mu_q}{T}\right)^2 + 30c_6 \left(\frac{\mu_q}{T}\right)^4$

an estimator for the radius of convergence

$$\left(rac{\mu_q}{T}
ight)_{crit} = \lim_{n o \infty} \left|rac{c_{2n}}{c_{2n+2}}
ight|^{1/2}$$

 $c_n > 0$ for all n; singularity for real μ

Bulk thermodynamics for small μ_q/T on $16^3 imes 4$ lattices

Taylor expansion of pressure up to $\mathcal{O}\left((\mu_q/T)^6\right)$

$$rac{p}{T^4} = rac{1}{VT^3} \ln \mathcal{Z} = \sum_{n=0}^\infty c_n(T) igg(rac{\mu_q}{T}igg)^n \simeq c_0 + c_2 igg(rac{\mu_q}{T}igg)^2 + c_4 igg(rac{\mu_q}{T}igg)^4 + c_6 igg(rac{\mu_q}{T}igg)^6$$

Bulk thermodynamics for small μ_q/T on $16^3 imes 4$ lattices

Taylor expansion of pressure up to $\mathcal{O}\left((\mu_q/T)^6
ight)$

$$rac{p}{T^4} = rac{1}{VT^3} \ln \mathcal{Z} = \sum_{n=0}^\infty c_n(T) igg(rac{\mu_q}{T}igg)^n \simeq c_0 + c_2 igg(rac{\mu_q}{T}igg)^2 + c_4 igg(rac{\mu_q}{T}igg)^4 + c_6 igg(rac{\mu_q}{T}igg)^6$$

Bulk thermodynamics for small μ_q/T on $16^3 imes 4$ lattices

Taylor expansion of pressure up to $\mathcal{O}\left((\mu_q/T)^6\right)$

$$rac{p}{T^4} = rac{1}{VT^3} \ln \mathcal{Z} = \sum_{n=0}^\infty c_n(T) igg(rac{\mu_q}{T}igg)^n \simeq c_0 + c_2 igg(rac{\mu_q}{T}igg)^2 + c_4 igg(rac{\mu_q}{T}igg)^4 + c_6 igg(rac{\mu_q}{T}igg)^6$$

irregular sign of c_n for $T \gtrsim T_c \quad \Leftrightarrow \quad$ singularity in complex plane

The pressure for $\mu_q/T>0$

C.R. Allton et al. (Bielefeld-Swansea), PRD68 (2003) 014507

 $\mu_q = 0, \quad 16^3 \times 4$ lattice contribution from $\mu_q/T>0$ improved staggered fermions; Taylor expansion, $\mathcal{O}((\mu/T)^4)$ $n_f=2,\ m_\pi\simeq 770\ MeV$ $\mu_{q}/T=1.0$ 5 p_{SB}/T^4 $0.8 \vdash \Delta p/T^4$ p/T⁴ 4 3 0.6 $\mu_{a}/T=0.8$ 3 flavour 2 flavour 2 flavour pure gauge 0.4 1 $\mu_{a}/T=0.6$ T [MeV] 0 100 200 300 400 500 600 0.2 $\mu_{q}/T=0.4$ $\mu_{q}/T=0.2$ high-T, ideal gas limit 0 0.8 1.2 1.4 1.8 1 1.6 2 $\left. rac{p}{T^4}
ight|_{\infty} = n_f igg(rac{7\pi^2}{60} + rac{1}{2} \left(rac{\mu_q}{T}
ight)^2 + rac{1}{4\pi^2} \left(rac{\mu_q}{T}
ight)^4 igg)$ T/T_0 RHIC: $\mu_q/T \leq 0.1$ F. Karsch, apeNEXT, Florence 2007 – p.28/32

The pressure for $\mu_q/T>0$

C.R. Allton et al. (Bielefeld-Swansea), PRD68 (2003) 014507

 $\mu_q=0, \quad 16^3 imes 4$ lattice

improved staggered fermions;

 $n_f=2,\ m_\pi\simeq 770\ MeV$

pattern for $\mu_q = 0$ and $\mu_q > 0$ similar; quite large contribution in hadronic phase; $\mathcal{O}((\mu/T)^6)$ correction small for $\mu_q/T \lesssim 1$ PRD71 (2005) 054508

contribution from $\mu_q/T > 0$ NEW: Taylor expansion, $\mathcal{O}((\mu/T)^6)$

EoS on HIC trajectories

- dense matter created in a HI-collision expands and cools at fixed entropy and baryon number
 - \Rightarrow lines of constant S/N_B in the QCD phase diagram

for example:

isentropic expansion, "mixed phase model": V.D. Toneev, J. Cleymans, E.G. Nikonov, K. Redlich, A.A. Shanenko, J. Phys. G27 (2001) 827

EoS on HIC trajectories

- dense matter created in a HI-collision expands and cools at fixed entropy and baryon number
 - \Rightarrow lines of constant S/N_B in the QCD phase diagram
 - high T: ideal gas

$$\frac{S}{N_B} = 3 \frac{\frac{32\pi^2}{45n_f} + \frac{7\pi^2}{15} + \left(\frac{\mu_q}{T}\right)^2}{\frac{\mu_q}{T} + \frac{1}{\pi^2} \left(\frac{\mu_q}{T}\right)^3}$$

 $S/N_B= ext{constant}\Leftrightarrow\ \mu_q/T\ ext{constant}$

Iow T: nucleon + pion gas

T
ightarrow 0: $\mu_q/T \sim c/T$

Isentropic Equation of State: p/ϵ

S. Ejiri, F. Karsch, E. Laermann and C. Schmidt, Phys. Rev. D73 (2006) 054506

 p/ϵ vs. ϵ shows almost no dependence on S/N_B

softest point: $p/\epsilon \simeq 0.075$

phenomenological EoS for $T_0 \lesssim T \lesssim 2T_0$

$$rac{p}{\epsilon} = rac{1}{3} \left(1 - rac{1.2}{1+0.5 \; \epsilon \; \mathrm{fm}^3/\mathrm{GeV}}
ight)$$

Isentropic Equation of State: p/ϵ

S. Ejiri, F. Karsch, E. Laermann and C. Schmidt, Phys. Rev. D73 (2006) 054506

 p/ϵ vs. ϵ shows almost no dependence on S/N_B

softest point:
$$p/\epsilon \simeq 0.075$$

 $\mu > 0$: phenomenological EoS for $T_0 \lesssim T \lesssim 2T_0$

so far analyzed only
for
$$m_{\pi} \simeq 770 \text{ MeV}$$
 $\frac{p}{\epsilon} = \frac{1}{3} \left(1 - \frac{1.2}{1 + 0.5 \ \epsilon \ \mathrm{fm}^3/\mathrm{GeV}} \right)$

awaits confirmation in (2+1)-flavor QCD with light quarks. Hore 2007 - p.30/32

Conclusions

non-perturbative QGP

the QGP is non-perturbative up to high temperatures; the running of α_s reflects "remnants of confinement"

bulk thermodynamics

the transition between a HG and the QGP is signaled by a rapid change in the energy density; calculations with different $\mathcal{O}(a^2)$ improved staggered fermions yield a consistent description of the high temperature phase;

the transition temperature

at the physical point of (2+1)-flavor QCD our calculation of T_c yields

 $T_c=192(7)(4){
m MeV}$

Radius of convergence: lattice estimates vs. resonance gas

Faylor expansion \Rightarrow estimates for radius of convergence ho

Radius of convergence: lattice estimates vs. resonance gas

Fixed Taylor expansion \Rightarrow estimates for radius of convergence ρ_2

HRG analytic, LGT consistent with HRG \Rightarrow infinite radius of convergence not yet ruled out

Radius of convergence: lattice estimates vs. resonance gas

