Heavy quark bindings at high temperature

Olaf Kaczmarek Felix Zantow Matthias Döring Kay Hübner Frithjof Karsch RBC-Bielefeld

Sourendu Gupta

February 9, 2007

"Machines" for lattice QCD - used by RBC-Bielefeld

apeNEXT

QCDOC

APEmille

Installation in Bielefeld

1999/2001	144 Gflops	APEmille (2 crates)
2005/2006	5 Tflops	apeNEXT (6 racks)

Motivation - Heavy quark bound states above deconfinement

Quarkonium suppression as a probe for thermal properties of hot and dense matter [Matsui and Satz]

- heavy quark potential gets screened
- screening radius related to parton density

$$r_D \sim rac{1}{g\sqrt{n/T}}$$

- at high *T* screening radius smaller than size of a quarkonium state

Typical length scales of heavy quark bound states: $1/\Lambda_{QCD} \sim 1$ fm

- screening has to be strong enough to modify short distance behaviour
- detailed analysis of "heavy quark potentials"
 - temperature and r dependence
 - screening properties above deconfinement
 - What is the correct effective potential at finite temperature ?

 $F_1(r,T) = U_1(r,T) - T S_1(r,T)$

Heavy quark bound states above deconfinement

Strong interactions in the deconfined phase $T \gtrsim T_c$

Possibility of heavy quark bound states?

Charmonium (χ_c , J/ψ) as thermometer above T_c

Suppression patterns of charmonium/bottomonium

 \implies Potential models

 \rightarrow heavy quark potential (*T*=0)

$$V_1(r) = -\frac{4}{3}\frac{\alpha(r)}{r} + \sigma r$$

 \rightarrow heavy quark free energies ($T > T_c$)

$$F_1(r,T) \simeq -\frac{4}{3} \frac{\alpha(r,T)}{r} e^{-m(T)r}$$

 \rightarrow heavy quark internal energies ($T \neq 0$)

$$F_1(r,T) = U_1(r,T) - T S_1(r,T)$$

→ Charmonium correlation functions/spectral functions

Heavy quark bindings at high temperature

The lattice set-up

Polyakov loop correlation function and free energy:

L. McLerran, B. Svetitsky (1981)

 \frown $Q\bar{Q} = 1, 8, av$

Lattice data used in our analysis:

$N_f = 0$:	$N_{f}=2$:	N _f = 3:	$N_{f} = 2 + 1$:
$32^3 \times 4, 8, 16$ -lattices	$16^3 \times 4$ -lattices	$16^3 \times 4$ -lattices	$24^4 \times 4$ -lattices
(Symanzik)	(Symanzik, p4-stagg.) hybrid-R	(stagg., Asqtad) hybrid-R	(Symanzik, p4fat3) RHMC
O. Kaczmarek, E. Karseb	$m_\pi/m_ ho\simeq 0.7~(m/T=0.4)$	$m_\pi/m_ ho\simeq 0.4$	$m_{\pi} \simeq 220$ MeV, phys. m_s
P. Petreczky, F. Zantow (2002, 2004)	O. Kaczmarek, F. Zantow (2005), O. Kaczmarek et al. (2003)	P. Petreczky, K. Petrov (2004)	OK, RBC-Bielefeld preliminary

The lattice set-up

Polyakov loop correlation function and free energy:

L. McLerran, B. Svetitsky (1981)

$$\frac{z_{\mathbf{Q}\bar{\mathbf{Q}}}}{z(\mathbf{T})} \simeq \frac{1}{z(\mathbf{T})} \int \mathcal{D} \mathbf{A} \dots \mathbf{L}(\mathbf{x}) \mathbf{L}^{\dagger}(\mathbf{y}) \exp\left(-\int_{\mathbf{0}}^{\mathbf{1}/\mathbf{T}} d\mathbf{t} \int d^{3}\mathbf{x} \mathcal{L}\left[\mathbf{A}, \dots\right]\right)$$
$$= -\frac{\mathbf{F}_{\mathbf{Q}\bar{\mathbf{Q}}}(\mathbf{r}, \mathbf{T})}{\mathbf{T}}$$
$$= -\frac{\mathbf{F}_{\mathbf{Q}\bar{\mathbf{Q}}}(\mathbf{r}, \mathbf{T})}{\mathbf{T}}$$
$$\mathbf{Q}\bar{\mathbf{Q}} = \mathbf{1}, \mathbf{8}, \mathbf{av}$$

O. Philipsen (2002) O. Jahn, O. Philipsen (2004)

Renormalization of F(r,T)by matching with T=0 potential

$$e^{-F_1(r,T)/T} = \left(Z_r(g^2)\right)^{2N_{\tau}} \langle \operatorname{Tr} (L_x L_y^{\dagger}) \rangle$$

Temperature depending running coupling

non-perturbative confining part for $r \gtrsim 0.4$ fm

 $\alpha_{qq}(r) \simeq 3/4r^2\sigma$

present below and just above T_c

remnants of confinement at $T \gtrsim T_c$

temperature effects set in at smaller r with increasing T

maximum due to screening

Free energy in perturbation theory:

$$F_1(r,T) \equiv V(r) \simeq -\frac{4}{3} \frac{\alpha(r)}{r} \quad \text{for} \quad r\Lambda_{\text{QCD}} \ll 1$$
$$F_1(r,T) \simeq -\frac{4}{3} \frac{\alpha(T)}{r} e^{-m_D(T)r} \quad \text{for} \quad rT \gg 1$$

QCD running coupling in the qq-scheme

$$\alpha_{qq}(r,T) = \frac{3}{4}r^2 \frac{dF_1(r,T)}{dr}$$

 \implies At which distance do *T*-effects set in ?

 \Rightarrow definition of the screening radius/mass

 \implies definition of the *T*-dependent coupling

Temperature depending running coupling

define $\tilde{\alpha}_{qq}(T)$ by maximum of $\alpha_{qq}(r,T)$:

$$\tilde{\alpha}_{qq}(T) \equiv \alpha_{qq}(r_{max},T)$$

perturbative behaviour at high T:

$$g_{2-\text{loop}}^{-2}(T) = 2\beta_0 \ln\left(\frac{\mu T}{\Lambda_{\overline{MS}}}\right) + \frac{\beta_1}{\beta_0} \ln\left(2\ln\left(\frac{\mu T}{\Lambda_{\overline{MS}}}\right)\right),$$

Using
$$T_c/\Lambda_{\overline{MS}} = 0.77(21)$$
 we find $\mu = 1.14(2)\pi$

non-perturbative large values near T_c

not a large Coulombic coupling

remnants of confinement at $T \gtrsim T_c$

string breaking and screening difficult to separate

slope at high T well described by perturbation theory

 \Rightarrow At which distance do *T*-effects set in ?

 \Rightarrow calculation of the screening mass/radius

Screening mass - perturbative vs. non-perturbative effects

Screening masses obtained from fits to:

$$F_1(r,T) - F_1(r = \infty, T) = -\frac{4\alpha(T)}{3r}e^{-m_D(T)r}$$

at large distances $rT\gtrsim 1$

leading order perturbation theory:

$$\frac{m_D(T)}{T} = \left(1 + \frac{N_f}{6}\right)^{1/2} g(T)$$

Screening mass - perturbative vs. non-perturbative effects

Screening masses obtained from fits to:

$$F_1(r,T) - F_1(r = \infty,T) = -\frac{4\alpha(T)}{3r}e^{-m_D(T)r}$$

at large distances $rT \gtrsim 1$

leading order perturbation theory:

$$\frac{m_D(T)}{T} = \mathbf{A} \left(1 + \frac{N_f}{6} \right)^{1/2} g(T)$$

 $A_{N_f=0} = 1.39(2)$

15

perturbative limit reached very slowly

10

20

T/T_c

25

Screening mass - density dependence

[M.Döring et al.]

leading order perturbation theory:

$$\frac{m_D(T, \mu_q)}{T} = g(T) \sqrt{1 + \frac{N_f}{6} + \frac{N_f}{2\pi^2} \left(\frac{\mu_q}{T}\right)^2}$$

Taylor expansion:

$$m_D(T) = m_0(T) + m_2(T) \left(\frac{\mu_q}{T}\right)^2 + O(\mu_q^4)$$

 $m_2(T)$ agrees with perturbation theory for $T \gtrsim 1.5T_c$

non-perturbative effects dominated by gluonic sector

Heavy quark bound states above T_c ?

bound states above deconfinement?

first estimate:

mean charge radii of charmonium states compared to screening radius

thermal modifications on ψ' and χ_c already at T_c

 J/ψ may survive above deconfinement

Heavy quark bound states above T_c ?

bound states above deconfinement?

first estimate:

mean charge radii of charmonium states compared to screening radius

thermal modifications on ψ' and χ_c already at T_c

 J/ψ may survive above deconfinement

Better estimates:

effective potentials in Schrödinger Equation Potential models, effective potential $V_{eff}(r,T)$ But: Free energies vs. internal energies F(r,T) = U(r,T) - TS(r,T)

direct calculation using correlation functions

Maximum entropy method \rightarrow spectral function

Free energy vs. Entropy at large separations

Free energies not only determined by potential energy

$$F_{\infty} = U_{\infty} - TS_{\infty}$$

Entropy contributions play a role at finite T

$$S_{\infty} = -\frac{\partial F_{\infty}}{\partial T}$$

Free energy vs. Entropy at large separations

The large distance behavior of the finite temperature energies is rather related to screening than to t he temperature dependence of masses of corresponding heavylight mesons!

High temperatures:

$$\begin{split} \mathbf{F}_{\infty}(\mathbf{T}) &\simeq & -\frac{4}{3}\mathbf{m}_{\mathbf{D}}(\mathbf{T})\alpha(\mathbf{T}) \simeq -\mathcal{O}(g^{3}T) \\ \mathbf{TS}_{\infty}(\mathbf{T}) &\simeq & -\frac{4}{3}\mathbf{m}_{\mathbf{D}}(\mathbf{T})\alpha(\mathbf{T}) \\ \mathbf{U}_{\infty}(\mathbf{T}) &\simeq & -4\mathbf{m}_{\mathbf{D}}(\mathbf{T})\alpha(\mathbf{T})\frac{\beta(\mathbf{g})}{\mathbf{g}} \\ &\simeq & -\mathcal{O}(g^{5}T) \end{split}$$

r-dependence of internal energies

$$F_{1}(r,T) = U_{1}(r,T) - TS_{1}(r,T)$$

$$S_{1}(r,T) = \frac{\partial F_{1}(r,T)}{\partial T}$$

$$U_{1}(r,T) = -T^{2} \frac{\partial F_{1}(r,T)/T}{\partial T}$$

Entropy contributions vanish in the limit $r \rightarrow 0$

$$F_1(r \ll 1, T) = U_1(r \ll 1, T) \equiv V_1(r)$$

important at intermediate/large distances

r-dependence of internal energies

$$F_{1}(r,T) = U_{1}(r,T) - TS_{1}(r,T)$$

$$S_{1}(r,T) = \frac{\partial F_{1}(r,T)}{\partial T}$$

$$U_{1}(r,T) = -T^{2} \frac{\partial F_{1}(r,T)/T}{\partial T}$$

Entropy contributions vanish in the limit $r \rightarrow 0$

$$F_1(r \ll 1, T) = U_1(r \ll 1, T) \equiv V_1(r)$$

important at intermediate/large distances

 \implies Implications on heavy quark bound states?

 \implies What is the correct $V_{eff}(r,T)$?

steeper slope of $V_{eff}(r,T) = U_1(r,T)$

 $\implies J/\psi$ stronger bound using $V_{eff} = U_1(r,T)$

 \implies dissociation at higher temperatures compared to $V_{eff}(r,T) = F_1(r,T)$

Schrödinger equation for heavy quarks:

$$\left[2m_f + \frac{1}{m_f}\Delta^2 + V_{eff}(\mathbf{r}, \mathbf{T})\right]\Phi_i^f = E_i^f(\mathbf{T})\Phi_i^f \quad , \quad f = \text{charm, bottom}$$

T-dependent color singlet heavy quark potential mimics in-medium modifications of $q\bar{q}$ interaction reduction to 2-particle interaction clearly too simple, in particular close to T_c

recent analysis:

using $V_{eff} = F_1$: S.Digal, P.Petreczky, H.Satz, Phys. Lett. B514 (2001)57 using $V_{eff} = V_1$: C.-Y. Wong, hep-ph/0408020 using $V_{eff} = V_1$: W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, hep-ph/0507084

state	J/ψ	χ_c	Ψ′	Ŷ	χ_b	Υ'	χ_b'	Υ"
$E_s^i[GeV]$	0.64	0.20	0.005	1.10	0.67	0.54	0.31	0.20
T_d/T_c	1.1	0.74	0.1-0.2	2.31	1.13	1.1	0.83	0.74
T_d/T_c	~ 2.1	~ 1.2	~ 1.2	~ 5.0	~ 1.95	~ 1.65	-	-
T_d/T_c	1.75-1.95	1.13-1.15	1.10-1.11	4.4-4.7	1.5-1.6	1.4-1.5	~ 1.2	~ 1.2

Colored bound states - Diquarks [M. Döring, K. Hübner, OK, FK, 2007]

Coloured bound states speculated just above T_c (SQGP) [E

[E.V. Shuryak, I. Zahed (2004/05)]

- Is the interaction strong enough to support diquarks?
- Potential models for coloured bound states
- Diquark free and internal energies

Colour antitriplet (anti-symmetric) or color sextet (symmetric) state:

$$3\otimes 3 = \overline{3}\oplus 6$$

$$C_{qq}^{\overline{3}}(R,T) = \frac{3}{2} \langle \operatorname{Tr} L(0) \operatorname{Tr} L(R) \rangle - \frac{1}{2} \langle \operatorname{Tr} L(0) L(R) \rangle$$
$$C_{qq}^{6}(R,T) = \frac{3}{4} \langle \operatorname{Tr} L(0) \operatorname{Tr} L(R) \rangle + \frac{1}{4} \langle \operatorname{Tr} L(0) L(R) \rangle$$
$$F_{qq}^{\overline{3},6}(R,T) = -T \ln C_{qq}^{\overline{3},6}(R,T)$$

Diquark free energies - qq vs. $q\bar{q}$ in the deconfined phase

perturbative relation between diquark and quark-antiquark free energies

$$F_{qq}^{\overline{3}}(r,T) \simeq \frac{1}{2} F_{q\bar{q}}^1(r,T)$$

good approximation above T_c .

Diquark free energies - qq vs. $q\bar{q}$ in the deconfined phase

perturbative relation between diquark and quark-antiquark free energies

$$F_{qq}^{\overline{3}}(r,T) \simeq \frac{1}{2} F_{q\bar{q}}^{1}(r,T)$$

good approximation above T_c .

temperature dependence for all separations

 \implies entropy contributions play a role for all r.

same asymptotic value for qq and $q\bar{q}$

 \implies quarks in both systems are screened independently by the medium

Heavy quark bindings at high temperature

Diquark free energies - qq vs. $q\bar{q}$ in the deconfined phase

perturbative relation between diquark and quark-antiquark free energies

$$F_{qq}^{\overline{3}}(r,T) \simeq \frac{1}{2} F_{q\bar{q}}^{1}(r,T)$$

good approximation above T_c .

Dissociation temperatures for heavy $q\bar{q}$ and qq bound states:

state	$\bar{c}c \left(J/\psi\right)$	CC	$\bar{b}b\left(\Upsilon ight)$	bb
E_s^i [GeV]	0.06	0	0.3	0.07
$T_{\rm dis}/T_c$	1.5	1.0	3.2	2.1

Diquark free energies - Screening and string breaking

Net quark number induced by a qq-pair:

$$N_{QQ}^{(c)}(r,T) = \langle N_q \rangle_{QQ} = \frac{\left\langle N_q L_{QQ}^{(c)}(r,T) \right\rangle}{\left\langle L_{QQ}^{(c)}(r,T) \right\rangle},$$

where N_q is the quark number operator,

$$N_q = \frac{1}{2} \operatorname{Tr} \left[D^{-1}(\hat{m}, 0) \left(\frac{\partial D(\hat{m}, \mu)}{\partial \mu} \right)_{\mu=0} \right] \,.$$

Net quark number induced by a single static quark source, \vec{A}

$$N_Q(T) = \langle N_q \rangle_Q = \frac{\langle N_q \operatorname{Tr} P(\vec{0}) \rangle}{\langle \operatorname{Tr} P(\vec{0}) \rangle}$$

Heavy quark bindings at high temperature

Diquark free energies - Screening and string breaking

Net quark number induced by a qq-pair:

$$N_{QQ}^{(c)}(r,T) = \langle N_q \rangle_{QQ} = \frac{\left\langle N_q L_{QQ}^{(c)}(r,T) \right\rangle}{\left\langle L_{QQ}^{(c)}(r,T) \right\rangle}$$

where N_q is the quark number operator,

$$N_q = \frac{1}{2} \operatorname{Tr} \left[D^{-1}(\hat{m}, 0) \left(\frac{\partial D(\hat{m}, \mu)}{\partial \mu} \right)_{\mu=0} \right] \,.$$

Net quark number induced by a single static quark source,

$$N_Q(T) = \langle N_q \rangle_Q = \frac{\langle N_q \operatorname{Tr} P(0) \rangle}{\langle \operatorname{Tr} P(\vec{0}) \rangle}$$

Diquark is neutralized by quarks or antiquarks from the vacuum to be color neutral overall

$$\lim_{T \to 0} N_{QQ}(r,T) = \begin{cases} 1 & , r < r_c \\ -2 & , r > r_c \end{cases},$$

Heavy quark bindings at high temperature

Using short distance behaviour of free energies Renormalization of F(r,T) at short distances

$$e^{-F_1(r,T)/T} = \left(Z_r(g^2)\right)^{2N_{\tau}} \langle \operatorname{Tr} (L_x L_y^{\dagger}) \rangle$$

Renormalization of the Polyakov loop

$$L_{\rm ren} = \left(Z_R(g^2)\right)^{N_t} L_{\rm lattice}$$

 L_{ren} defined by long distance behaviour of F(r,T)

$$L_{\rm ren} = \exp\left(-\frac{F(r=\infty,T)}{2T}\right)$$

Renormalized Polyakov loop

Renormalization constants obtained from heavy quark free energies

with $Q^{(2)} = 0.0597(13)$ consistent with lattice perturbation theory (Heller + Karsch, 1985)

Instead of renormalizing heavy quark free energies

Use Polyakov loops obtained at different N_{τ}

Assume no volume dependence $(T > T_c)$

The renormalization constants only depend on coupling, i.e. $Z(g^2)$

Instead of renormalizing heavy quark free energies

Use Polyakov loops obtained at different N_{τ}

Assume no volume dependence ($T > T_c$)

The renormalization constants only depend on coupling, i.e. $Z(g^2)$

Instead of renormalizing heavy quark free energies

Use Polyakov loops obtained at different N_{τ}

Assume no volume dependence ($T > T_c$)

The renormalization constants only depend on coupling, i.e. $Z(g^2)$

solely based on gauge-invariant quantities

use character property of direct product rep: $\chi_{p\otimes q}(g) = \chi_p(g)\chi_q(g)$

Z(3) symmetry: $L_D \rightarrow e^{it\phi}L_D$

triality (Z(3) charge): $t \equiv p - q \mod 3$

adjoint link variable $\left[U^{D=8}\right]_{ij} := \frac{1}{2} \operatorname{Tr} \left[U^{D=3} \lambda_i (U^{D=3})^{\dagger} \lambda_j\right]$

D	(p,q)	t	$C_2(r)$	$d_D = C_D / C_F$	$L_D(x)$
3	(1, 0)	1	4/3	1	L_3
6	(2,0)	2	10/3	5/2	$L_3^2 - L_3^*$
8	(1, 1)	0	3	9/4	$ L_3 ^2 - 1$
10	(3,0)	0	6	9/2	$L_{3}L_{6}-L_{8}$
15	(2, 1)	1	16/3	4	$L_{3}^{*}L_{6}-L_{3}$
15'	(4, 0)	1	28/3	7	$L_3L_{10} - L_{15}$
24	(3,1)	2	25/3	25/4	$L_3^*L_{10} - L_6$
27	(2,2)	0	8	6	$ L_6 ^2 - L_8 - 1$

perturbation theory:

$$F_D(r,T) = -C_D \frac{\alpha_s(r)}{r}$$
 for $r \Lambda_{QCD} \ll 1$

renormalization of free energies:

$$e^{-F_D^1(r,T)/T} = \left(Z_r(g^2)\right)^{2d_D N_{\tau}} \langle \operatorname{Tr} (L_x^D L_y^{D^{\dagger}})$$

i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2000) 114503]

Heavy quark bindings at high temperature

Does Casimir scaling hold beyond leading order?

Singlet free energies of static quarks in representation D=3,8:

$$\frac{F_D^{\text{sing}}(r,T)}{T} = -\ln\left(\left\langle \tilde{\text{Tr}}L_D(\mathbf{x})L_D^{\dagger}(\mathbf{y})\right\rangle\right)\Big|_{GF}$$

with L_D made up of $U^{D=3}$ and $\left[U^{D=8}\right]_{ij} := \frac{1}{2} \operatorname{Tr} \left[U^{D=3} \lambda_i (U^{D=3})^{\dagger} \lambda_j\right]$

Heavy quark bindings at high temperature

Does Casimir scaling, $L_3^{1/C_F} \simeq L_D^{1/C_D}$, hold beyond two-loop order? renormalization of the Polykov loop:

$$\langle L_D^{ren} \rangle = \left(Z_D(g^2) \right)^{N_{\tau} d_D} \langle L_D^{bare} \rangle,$$

i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2000) 114503]

Does Casimir scaling, $L_3^{1/C_F} \simeq L_D^{1/C_D}$, hold beyond two-loop order? renormalization of the Polykov loop:

$$\langle L_D^{ren} \rangle = \left(Z_D(g^2) \right)^{N_{\tau} d_D} \langle L_D^{bare} \rangle,$$

i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2000) 114503] Casimir scaling equivalent for bare or renormalized Polyakov loops

Does Casimir scaling, $L_3^{1/C_F} \simeq L_D^{1/C_D}$, hold beyond two-loop order? renormalization of the Polykov loop:

$$\langle L_D^{ren} \rangle = \left(Z_D(g^2) \right)^{N_{\tau} d_D} \langle L_D^{bare} \rangle,$$

i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2000) 114503] Casimir scaling equivalent for bare or renormalized Polyakov loops

string breaking expected for representations with triality t = 0non-zero for L_8^R even below T_c

string breaking expected for representations with triality t = 0

non-zero for L_8^R even below T_c

finite values of $F_8(r)$ at large distances

string breaking expected for representations with triality t = 0

```
non-zero for L_8^R even below T_c
```

```
finite values of F_8(r) at large distances
```

might be related to binding energy of gluelumps

2-flavour QCD:

Polyakov loops in higher representations [S. Gupta, K. Hübner, OK]

2-flavour QCD:

Freedom to set the scale:

$$V_{T=0}(r) \longrightarrow V_{T=0}(r) + C$$

$$L_D^R \longrightarrow L_D^R \cdot \exp(-C/2T)$$

$$Z_D^R \longrightarrow Z_D^R \cdot \exp(-Ca(g^2)/2)$$

Be carefull to extract T_c by slope of L^R Susceptibility not renormalized in this way

Conclusions

Heavy quark free energies, internal energies and entropy

Complex r and T dependence

Running coupling shows remnants of confinenement above T_c

Entropy contributions play a role at finite T

Non-perturbative effects in m_D up to high T

Non-perturbative effects dominated by gluonic sector

Bound states in the quark gluon plasma

First estimates from potential models

Higher dissociation temperature using V_1

(directly produced) J/ψ exist well above T_c Diquarks unlikely to exist above T_c

Renormalized Polyakov loop

Two consistent renormalization procedures

Renormalization constant depend on the bare coupling

Applicable for higher representations

Casimir scaling good approximation at high T